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Resumen

En esta tesis, proponemos y analizamos un nuevo método de elementos finitos

mixtos basado en pseudoesfuerzo para los problemas de Stokes y Navier–Stokes, que

permite conservación exacta de masa y momentum. En ambos casos, usamos una

descomposición de Helmholtz para la velocidad y derivamos una formulación varia-

cional mixta de tres campos, donde el pseudoesfuerzo, la velocidad y una incógnita

adicional que representa la función nula son las principales incógnitas del sistema.

Para el problema de Stokes, demostramos que el método está bien planteado y

obtenemos tasas de convergencia teóricas, incluyendo un resultado de superconver-

gencia para la aproximación del gradiente de la velocidad. Una ventaja clave del

método propuesto es su eficiencia computacional, ya que resulta ligeramente menos

costoso que el enfoque clásico basado en pseudoesfuerzo estudiado en [11, 26], y al

mismo tiempo asegura la conservación de masa y cantidad de movimiento. Además,

extendemos nuestro análisis al problema de Stokes con condiciones de borde mixtas.

Para el problema de Navier–Stokes, a diferencia del caso de Stokes, es necesario

utilizar una descomposición de Helmholtz para la velocidad, pero en espacios de

Banach, lo cual solo es válido en dos dimensiones. El análisis de los problemas

continuo y discreto se lleva a cabo utilizando el teorema de Banach–Nečas–Babuška

y el teorema del punto fijo de Banach, bajo el supuesto de datos suficientemente

pequeños. También derivamos la correspondiente estimación a priori del error y

proporcionamos la tasa de convergencia teórica. Otras variables de interés, como

la presión del fluido, la vorticidad y el gradiente de velocidad del fluido, pueden

aproximarse fácilmente mediante un simple postprocesamiento de las soluciones del

método de elementos finitos, con la misma tasa de convergencia.

Para ambos problemas, presentamos varios ejemplos numéricos que validan los

resultados teóricos, demostrando la efectividad y precisión del método propuesto, el
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cual ofrece varias ventajas, incluyendo facilidad de implementación y compatibilidad

con paquetes de software existentes para la resolución de ecuaciones en derivadas

parciales.



Abstract

In this thesis, we propose and analyze a new pseudosstres-based mixed finite

element method for the Stokes and Navier–Stokes problems allowing exact conser-

vation of mass and momentum. In both cases, we decompose the velocity using

a Helmholtz decomposition and derive a three-field mixed variational formulation,

where the pseudostress, the velocity, and an additional unknown representing the

null function are the main unknowns of the system.

For the Stokes problem, we establish that the method is well-posed and obtain

theoretical convergence rates, including a superconvergence result for the approxima-

tion of the velocity gradient. A key advantage of the proposed method is its computa-

tional efficiency, as it is slightly less expensive than the classical pseudostress-based

approach studied in [11, 26], while ensuring mass and momentum conservation.

Additionally, we extend our analysis to the Stokes problem with mixed boundary

conditions.

For the Navier–Stokes problem, and unlike the Stokes problem, it is necessary

to use a Helmholtz decomposition to decompose the velocity, but in Banach spaces,

which is valid only in two dimensions. The analysis of the continuous and discrete

problems is carried out using the Banach–Nečas–Babuška theorem and Banach’s

fixed-point theorem, under the assumption of sufficiently small data. We also derive

the corresponding a priori error estimate and provide the theoretical convergence

rate. Other variables of interest, such as fluid pressure, fluid vorticity, and the fluid

velocity gradient, can be easily approximated as a simple post-processing of the

finite element solutions, with the same convergence rate.

For both problems we provide several numerical examples to validate the theoret-

ical results, demonstrating the effectiveness and accuracy of the proposed method,

which offers several advantages, including ease of implementation and compatibility
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with existing software packages for solving partial differential equations.
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Introducción

El problema de Navier–Stokes (NS) tiene una importancia fundamental en el

campo de la dinámica de fluidos. Como es bien sabido, sus ecuaciones describen el

movimiento de fluidos viscosos y gobiernan una amplia gama de fenómenos, como

la atmósfera terrestre, las corrientes oceánicas, el flujo alrededor de veh́ıculos y

proyectiles y, de forma más general, cualquier proceso relacionado con los fluidos.

Este problema ha encontrado amplias aplicaciones en diversos campos cient́ıficos y

de ingenieŕıa, como la aerodinámica, la meteoroloǵıa, la oceanograf́ıa, el diseño de

sistemas de ventilación e inclusive como se puede ver en [38] se han utilizado amplia-

mente en videojuegos para modelar muchos fenómenos naturales. La complejidad

matemática del problema de NS, hace que no sea posible hallar su solución anaĺıtica,

salvo ciertos tipos de flujo y situaciones muy concretas, lo que lleva a la necesidad de

desarrollar métodos numéricos eficientes para obtener soluciones aproximadas. Por

esta razón, la comunidad de análisis numérico, lleva décadas desarrollando métodos

numéricos para aproximar la solución de NS (ver por ejemplo [28] y [39] ).

Entre los métodos numéricos utilizados para simular flujos gobernados por las

ecuaciones de NS, los métodos de elementos finitos destacan por su flexibilidad y

precisión en la aproximación de soluciones a problemas complejos con geometŕıas

diversas y condiciones de contorno variadas. Estos métodos han sido objeto de un

amplio desarrollo teórico y práctico, abordando desaf́ıos clave como la estabilidad,

la convergencia y la precisión de las soluciones obtenidas. En cuanto a las formu-

laciones mixtas para las ecuaciones de NS, los trabajos de Farhloul et al. (en [20]

y [19]) destacan por extender el análisis de formulaciones mixtas duales desde las

ecuaciones de Stokes al problema de NS. En [20], los autores introducen el ten-

sor de deformación, y en [19], definen el tensor del gradiente de velocidad como

las principales incógnitas de los sistemas correspondientes, proponiendo métodos
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numéricos cuasi-óptimos para el problema de flujo de fluidos. Por su parte, Cai et

al., en [8, 10, 9], han extendido el análisis de los métodos mixtos basados en el

pseudoesfuerzo para el problema de Stokes al problema de NS. Introducen y ana-

lizan un método conforme para una formulación mixta basada en el pseudoesfuerzo,

obteniendo también un esquema numérico cuasi-óptimo. Posteriormente, Howell y

Walkington, en [33], introducen un nuevo método de elementos finitos mixtos dual

antisimétrico para el problema en estudio, considerando como incógnitas principales

el gradiente de velocidad (en L2), la velocidad (en L2) y un tensor de pseudoesfuerzo

modificado (en H(div)) que vincula el gradiente de velocidad y la presión con el

término convectivo. Además, dado que el análisis se centra en condiciones inf-sup

no estándar, los autores proponen nuevas familias de elementos finitos, obtenidas

mediante el enriquecimiento de familias bien conocidas diseñadas para problemas

de elasticidad, como los elementos de Arnold–Falk–Winther y PEERS. Usando es-

tos espacios, se puede demostrar una convergencia óptima, aunque con un costo

computacional relativamente alto. Un enfoque similar se presenta en [13], donde se

introduce un método de elementos finitos mixtos aumentado para las ecuaciones de

NS. En este método, de manera similar a [33], se define un tensor de pseudoesfuerzo

no estándar que relaciona el gradiente de velocidad con el término convectivo. Este

pseudoesfuerzo (en H(div)), junto con la velocidad en H1, son las únicas incógnitas

del sistema, mientras que la presión y otras variables de interés pueden recuperarse

mediante un procedimiento de post-proceso. La solución de los problemas continuo

y discreto, aśı como la demostración de la convergencia óptima, se logran mediante

la incorporación de términos de mı́nimos cuadrados en la formulación. Este enfoque

les permite evitar la necesidad de demostrar condiciones inf-sup y, como resultado,

relajar las hipótesis sobre los subespacios discretos correspondientes. Sin embargo,

este procedimiento incrementa significativamente la complejidad y el costo computa-

cional.

En cuanto a los métodos conservativos, podemos destacar [30], donde los autores

introducen una familia de elementos finitos conformes y a divergencia nula para el

problema de Stokes en mallas triangulares generales en dos dimensiones, garanti-

zando la conservación de la masa en la formulación conforme velocidad-presión. La

propiedad de divergencia nula se logra mediante el enriquecimiento adecuado del

espacio polinómico para la velocidad, lo que hace que la implementación computa-
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cional sea más desafiante y aumente el costo computacional. La extensión de este

trabajo al caso tridimensional se puede encontrar en [31].

Otra posibilidad para obtener esquemas numéricos conservativos es reformular

las ecuaciones. En [17] (véase también [2]), los autores introducen la vorticidad

como una incógnita adicional, obteniendo aśı una formulación variacional para el

problema de Stokes con la velocidad en H(div). Este enfoque permite que la veloci-

dad sea aproximada mediante elementos finitos conformes en H(div), obteniendo aśı

un esquema numérico conforme y conservativo de masa. Sin embargo, este enfoque

no se ha extendido al problema de NS, ya que el término convectivo impide el uso

de los mismos espacios para las variables que en [17].

Por otro lado, podemos mencionar [27], donde el gradiente de velocidad se in-

troduce como una incógnita adicional, permitiendo que la velocidad sea aproximada

mediante elementos finitos conformes en H(div) y logrando aśı la conservación e-

xacta de la masa. Similar a [17], el término convectivo dificulta la extensión de este

enfoque al problema de NS.

Por su parte, en [12], los autores han introducido y analizado un método de

elementos finitos mixtos conservativo de momentum para el problema estacionario

de NS con viscosidad constante, formulado en espacios de Banach. Derivan una

formulación mixta en la que el tensor de pseudoesfuerzo, introducido en [33], y

la velocidad son las incógnitas principales del sistema. Se emplean elementos de

Raviart–Thomas de grado k y elementos polinomiales discontinuos a trozos de grado

k para aproximar el tensor de pseudoesfuerzo y la velocidad, respectivamente. Con

esta elección de espacios, la ecuación de equilibrio se satisface exactamente cuando

la fuerza externa pertenece al espacio discreto de velocidades, asegurando aśı la

conservación del momentum.

Recientemente, en [14], los autores han propuesto una reformulación de la for-

mulación basada en pseudoesfuerzo para el problema de Stokes (consúltese [11], [24],

[25] y [26] para más detalles), obteniendo un método de elementos finitos conforme

basado en pseudoesfuerzo que conserva masa para resolver el problema de Stokes.

Descomponen la velocidad mediante una descomposición de Helmholtz, obteniendo

una formulación variacional mixta en la que el pseudoesfuerzo, la velocidad y una

incógnita adicional son las principales incógnitas del sistema. Para obtener un pro-

blema discreto bien planteado en [14], es necesario incorporar términos adecuados
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en la formulación, los cuales surgen de las mismas ecuaciones.

Motivados por lo anterior, en el Caṕıtulo 1 comenzamos el análisis para el pro-

blema de Stokes. Introducimos la formulación variacional y el esquema discreto,

analizamos el buen planteamiento tanto del problema continuo como del discreto,

y obtenemos las tasas teóricas de convergencia. Finalmente, presentamos cuatro

ejemplos numéricos que ilustran el desempeño del método. Luego, en el Caṕıtulo 2,

extendemos el análisis desarrollado en el Caṕıtulo 1 al problema de NS formulado en

espacios de Banach. El análisis de los problemas continuo y discreto, al igual que en

[12], se lleva a cabo utilizando el teorema de Banach–Nečas–Babuška y el teorema

del punto fijo de Banach, bajo el supuesto de datos suficientemente pequeños. Este

riguroso marco matemático garantiza la estabilidad y la convergencia del método. A

su vez, obtenemos las correspondientes estimaciones a priori del error y demostramos

la convergencia óptima de nuestro método, lo cual es confirmado mediante pruebas

numéricas. A diferencia de [14], en lugar de enriquecer la formulación con términos

adicionales para establecer el buen planteamiento del problema discreto, adopta-

mos una descomposición de Helmholtz discreta, evitando aśı el procedimiento que

incrementa el costo computacional.

Es importante enfatizar que, en el caso de Stokes, todo el análisis se ha realizado

en d dimensiones, con d ∈ {2, 3}; mientras que, para NS, solo se ha desarrollado en

dos dimensiones. Esto se debe a que la descomposición de Helmholtz de Lp sobre

dominios Lipschitz sólo es válida para rangos espećıficos de p, los cuales vaŕıan

según la dimensión considerada. Desafortunadamente, en tres dimensiones L4 no

puede descomponerse de la misma manera que en dos dimensiones. Este problema

representa un tema de investigación futura.



Introduction

The Navier–Stokes (NS) problem is of fundamental importance in the field of fluid

dynamics. As is well known, its equations describe the motion of viscous fluids and

govern a broad range of phenomena, including Earth’s atmosphere, ocean currents,

flow around vehicles and projectiles, and, more generally, any fluid-related processes.

This problem has found widespread applications in various scientific and engineering

fields, such as aerodynamics, meteorology, oceanography, ventilation system design,

and, as noted in [38], even in video games to model natural phenomena. The math-

ematical complexity of the NS problem makes it impossible to obtain an analytical

solution in most cases, except for specific types of flow or highly constrained scenar-

ios. As a result, there has long been a need to develop efficient numerical methods

for approximating solutions. Consequently, the numerical analysis community has

been working for decades to develop methods that can accurately approximate the

NS solution (see for instance [28] and [39]).

Among the numerical methods used to simulate flows governed by the NS equa-

tions, finite element methods stand out for their flexibility and accuracy in ap-

proximating solutions to complex problems with diverse geometries and boundary

conditions. These methods have been the subject of extensive theoretical and prac-

tical development, addressing key challenges such as stability, convergence, and the

accuracy of the resulting solutions. Regarding mixed formulations for the NS equa-

tions, the works of Farhloul et al. (in [20] and [19]) stand out for extending the

analysis of mixed dual formulations from the Stokes equations to the NS problem.

In [20], the authors introduce the strain tensor, and in [19], they define the veloc-

ity gradient tensor as the main unknowns of the corresponding systems, proposing

quasi-optimal numerical methods for the fluid flow problem. For their part, Cai et

al. in [8, 10, 9], have extended the analysis of pseudostress-based mixed methods for

5
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the Stokes problem to the NS problem. They introduce and analyze a conforming

method for a pseudostress-based mixed formulation, also obtaining a quasi-optimal

numerical scheme. Subsequently, Howell and Walkington in [33], introduce a new

skew-symmetric dual-mixed finite element method for the problem under study,

considering the velocity gradient (in L2), the velocity (in L2) and a modified pseu-

dostress tensor (in H(div)) that links the velocity gradient and pressure to the

convective term, as the main unknowns of the system. Additionally, since the anal-

ysis focuses on nonstandard inf-sup conditions, the authors propose new families of

finite elements, derived by enriching well-known families designed for elasticity prob-

lems, such as the Arnold–Falk–Winther and PEERS elements. Using these spaces,

optimal convergence can be demonstrated, albeit at a relatively high computational

cost. A similar approach is presented in [13], where an augmented mixed finite ele-

ment method for the NS equations is introduced. In this method, similar to [33], a

non-standard pseudostress tensor is defined that relates the velocity gradient to the

convective term. This pseudostress (in H(div)), along with the velocity in H1, are

the only unknowns in the system, while the pressure and other variables of interest

can be recovered through a post-processing procedure. The solution to both the

continuous and discrete problems, as well as the proof of optimal convergence, are

achieved through the incorporation of least-squares terms into the formulation. This

approach allows them to circumvent the necessity of proving inf-sup conditions, and

as a result, to relax the hypotheses on the corresponding discrete subspaces. How-

ever, this procedure increases the complexity and computational cost significantly.

Concerning conservative methods, we can highlight [30] where the authors intro-

duce a family of divergence-free conforming finite elements for the Stokes problem

on general triangular meshes in two dimensions, ensuring mass conservation in the

conforming velocity-pressure formulation. The divergence-free property is achieved

by appropriately enriching the polynomial space for the velocity, which makes the

computational implementation more challenging and increases the computational

cost. We can find the extension of this work to the three-dimensional case in [31].

Another possibility to obtain conservative numerical schemes is to reformulate the

equations. In [17] (see also [2]), the authors introduce the vorticity as an additional

unknown, thus obtaining a variational formulation for the Stokes problem with the

velocity in H(div). This approach allows the velocity to be approximated using
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H(div)-conforming finite elements, thereby obtaining a conforming mass conserva-

tive numerical scheme. However, this approach has not been extended to the NS

problem, as the convective term prevents the use of the same spaces for the vari-

ables as in [17]. On the other hand, we can mention [27], where the velocity gradient

is introduced as an additional unknown, and the velocity can be approximated us-

ing H(div)-conforming finite elements, thereby achieving exact mass conservation.

Similar to [17], the convective term hinders the extension of this approach to the

NS problem. For their part, in [12] the authors have introduced and analyzed a mo-

mentum conservative mixed finite element method for the stationary NS problem

with constant viscosity, posed in Banach spaces. They derive a mixed formulation in

which the pseudostress tensor, as introduced in [33], and the velocity are the main

unknowns of the system. Raviart–Thomas elements of degree k and discontinuous

piecewise polynomial elements of degree k are used to approximate the pseudostress

tensor and the velocity, respectively. With this choice of spaces, the equilibrium

equation is exactly satisfied when the external force belongs to the discrete veloc-

ity space, thereby ensuring momentum conservation. Recently, in [14] the authors

have proposed a reformulation of the pseudostress-based formulation for the Stokes

problem (refer to [11], [24], [25] and [26] for details) obtaining a pseudostress-based

conformal finite element method which conserves mass to solve the Stokes problem.

They decompose the velocity by means of a Helmholtz decomposition obtaining a

mixed variational formulation, where the pseudostress, the velocity and an additional

unknown are the main unknowns of the system. In order to obtain a well-posed dis-

crete problem in [14], it is necessary to incorporate suitable terms in the formulation

which arise from the same equations.

Motivated by the above in Chapter 1 we begin the analysis for the Stokes pro-

blem. We introduce the variational formulation, the discrete scheme, we analyze well-

posedness of both, the continuous and discrete problems and derive the theoretical

rates of convergence. Finally, we provide 4 numerical examples that illustrate the

perfomance of the method. Next, in Chapter 2 we extende the analysis provided in

Chapter 1 to the NS problem, posed in Banach spaces. The analysis of the conti-

nuous and discrete problems, as in [12], is performed using Banach–Nečas–Babuška

and Banach’s fixed-point theorem, under the assumptions of sufficiently small data.

This rigorous mathematical framework guarantees the stability and convergence of
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the method. In turn, we derive the corresponding error estimates and prove the

optimal convergence of our method, which is confirmed by the respective numerical

tests. Unlike [14], instead of enriching the formulation with additional terms to

establish the well-posedness of the discrete problem, we adopt a discrete Helmholtz

decomposition, thereby avoiding the procedure that increases computational cost.

It is important to emphasize that in the case of Stokes, all the analysis has

been carried out in d dimensions, with d ∈ {2, 3}; whereas in NS it has only been

developed in two dimensions. This is because the Helmholtz decomposition of Lp into

Lipschitz domains is valid only for specific ranges of p, which vary depending on the

dimension considered. Unfortunately, L4 cannot be decomposed in three dimensions

as it can be done in two dimensions. This issue represents a topic for future research.



Chapter 1

A momentum and mass

conservative pseudostress-based

mixed finite element method for

the Stokes problem

In this chapter, we propose and analyze a mass- and momentum-conservative

numerical scheme for a pseudostress-based formulation of the Stokes problem.

1.1 Preliminaries

To provide more details on our approach, we begin by recalling the classical

Stokes problem, governed by the following system of partial differential equations:

−ν∆u+∇p = f in Ω, divu = 0 in Ω, u = uD on Γ,

∫
Ω

p = 0. (1.1.1)

This system describes the motion of an incompressible fluid with velocity u =

(u1, . . . , ud)
t, pressure p, and viscosity ν > 0 in a region Ω ⊆ Rd (d = 2, 3), subjected

to a source force f = (f1, . . . , fd)
t and a prescribed velocity uD = (uD,1, . . . , uD,d)

t

on the boundary Γ := ∂Ω, satisfying the compatibility condition:∫
Γ

uD · n = 0. (1.1.2)

9
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Here, n = (n1, . . . , nd)
t denotes the outward unit normal vector on Γ.

In [11] and [26] (see also [24] for a similar approach), the so-called pseudostress

tensor given by:

σ := ν∇u− p I in Ω, (1.1.3)

is introduced to reformulate (1.1.1) as follows:

σd = ν∇u in Ω, −divσ = f in Ω, u = uD on Γ,

∫
Ω

tr (σ) = 0, (1.1.4)

where I denotes the identity matrix, tr (σ) is the trace of the tensor σ, σd :=

σ − 1
d
tr (σ)I denotes the deviatoric part of σ, and div τ is the divergence operator

div acting along the rows of τ for any tensor field τ = (τij)i,j=1,d.

Based on (1.1.4), the works [11] and [26] study conforming numerical discretiza-

tions for the following variational problem: Find σ ∈ H0(div ; Ω) and u ∈ L2(Ω) =

[L2(Ω)]d such that

1

ν
(σd, τ d)Ω + (u,div τ )Ω = ⟨τn,uD⟩Γ , ∀τ ∈ H0(div ; Ω),

(v,divσ)Ω = −(f ,v)Ω, ∀v ∈ L2(Ω),

(1.1.5)

where, for simplicity, we use the following notation:

(v, w)Ω :=

∫
Ω

vw, (v,w)Ω :=

∫
Ω

v ·w, (τ , ζ)Ω :=
d∑

i,j=1

∫
Ω

τijζij,

for any scalars v, w, vectors v = (vi)i=1,d, w = (wi)i=1,d, and tensor fields ζ =

(ζij)i,j=1,d, τ = (τij)i,j=1,d. In addition, ⟨·, ·⟩Γ denotes the duality pairing between

the trace space H1/2(Γ) and its dual H−1/2(Γ), which coincides with the L2(Γ)-inner

product when applied to functions in L2(Γ).

Here, H(div ; Ω) denotes the space of tensors whose rows belong to

H(div; Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)},

and H0(div ; Ω) is the subspace of H(div ; Ω) given by

H0(div ; Ω) := {τ ∈ H(div ; Ω) : (tr (τ ), 1)Ω = 0}.
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In [11] and [26], it is shown that selecting Raviart–Thomas elements of degree

k ≥ 0 or Brezzi–Douglas–Marini (BDM) elements of order k + 1 for H(div ; Ω) and

piecewise polynomials of degree k for L2(Ω) leads to a well-posed and optimally con-

vergent conforming discretization of (1.1.5). In addition, from the second equation of

(1.1.5) it can be seen that the equilibrium equation divσ = −f is exactly satisfied

if f belongs to the same discrete space as the velocity. Consequently, the method

preserves momentum. However, since the condition divu = 0 in Ω cannot be ensured

at the discrete level, the method lacks mass conservation (see Example 4 in Section

1.5). To overcome this lack of mass conservation, in [14] is introduced the following

variational formulation based on (1.1.4): Find σ ∈ H0(div ; Ω), u ∈ H(div0; Ω) and

φ ∈ H1
0(Ω), such that

1

ν
(σd, τ d)Ω +

1

ν
(divσ,div τ )Ω + (u+∇φ,div τ )Ω = ⟨τn,uD⟩Γ −

1

ν
(f ,div τ )Ω,

(v +∇ψ,divσ)Ω = −(f ,v +∇ψ)Ω,
(1.1.6)

for all τ ∈ H0(div ; Ω) and (v, ψ) ∈ H(div0; Ω)× H1
0(Ω), where

H1
0(Ω) := {ψ ∈ H1(Ω) : ψ = 0 on Γ} and

H(div0; Ω) := {v ∈ H(div; Ω) : div v = 0 in Ω}.

In [14], it is proven that φ = 0 in Ω and consequently, problems (1.1.6) and (1.1.5)

are equivalent, with the key argument relying on the Helmholtz decomposition:

L2(Ω) = H(div0; Ω)⊕ H1
0(Ω).

Furthermore, by selecting Raviart–Thomas elements of degree k ≥ 0 or BDM ele-

ments of degree k + 1 for the tensor σ, Raviart–Thomas elements of degree k for

the velocity u, and continuous piecewise polynomials of degree k+1 for H1
0(Ω), it is

shown that the resulting conforming Galerkin discretization is well-posed, optimally

convergent, and mass-conservative. However, the approach proposed in [14] fails to

ensure momentum conservation. This is because the equation

(v +∇ψ,divσ + f)Ω = 0, (1.1.7)
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for all discrete functions v and ψ in their respective discrete spaces does not ne-

cessarily imply that the equilibrium equation divσ = −f is exactly satisfied in Ω,

even when f is approximated by piecewise polynomials.

Building on the above discussion and aiming to contribute to the development

of numerical schemes for fluid flow problems that preserve conservation laws, we

propose a new pseudostress-based numerical scheme that exactly preserves mass and

momentum, where the latter holds for f in a suitably chosen piecewise polynomial

space.

To achieve this, we discretize an equivalent reduced version of the three-field

variational formulation (1.1.6), employing BDM elements of order 1 or Raviart–

Thomas elements of order 0 for σ and τ , Raviart–Thomas elements of order 0 for

u and v, and the lowest-order Crouzeix–Raviart element (see [15]) for φ and ψ.

The key argument for ensuring momentum conservation is the discrete Helmholtz

decomposition of piecewise constant functions into divergence-free Raviart–Thomas

elements of order zero and gradients of Crouzeix–Raviart elements, as established in

[3] (see also [41]). The above allows us to conclude from (1.1.7) that the momentum

equation is exactly satisfied in Ω if f is piecewise constant.

It is important to note that, in this approach, as well as in the previous works

[11], [26] and [14], the momentum equation divσ = −f is imposed in the L2 sense at

both the continuous and discrete levels. As discussed in [37], this enforcement comes

at the expense of losing pressure robustness, which can be regarded as a trade-off

for achieving momentum conservation.

The rest of the chapter is organized as follows: In Section 1.2, we introduce the

three-field continuous problem and analyze its well-posedness. Then, in Section 1.3,

we propose the numerical scheme and study its well-posedness and convergence. In

Section 1.4 we address the extension to the Stokes problem with mixed boundary

conditions. Finally, in Section 1.5 we illustrate the performance of the method by

providing some numerical examples.

We conclude this section by introducing some notations and definitions. Through-

out this work, we adopt standard notation for the Lebesgue and Sobolev spaces L2(Ω)

and H1(Ω), equipped with the norms ∥ · ∥0,Ω and ∥ · ∥1,Ω, respectively. The seminorm

| · |1,Ω is also used for H1(Ω) and serves as a norm in the subspace H1
0(Ω) introduced

earlier.
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Furthermore, we use S and S to represent the vectorial and tensorial counterparts

of a generic scalar function space S. For a vector field v = (vi)i=1,d, the differential

operators ∇v and div v employed above are defined as

∇v :=

(
∂vi
∂xj

)
i,j=1,d

, div v :=
d∑
j=1

∂vj
∂xj

.

As usual, the spaces H(div; Ω) and H(div ; Ω) are equipped with the norms

∥v∥div,Ω :=
(
∥v∥20,Ω + ∥div v∥20,Ω

)1/2
, ∥τ∥div ,Ω :=

(
∥τ∥20,Ω + ∥div τ∥20,Ω

)1/2
,

respectively. Moreover, using [22, Lemma 2.3], it can be shown that the seminorm

|τ |div ,Ω :=
(
∥τ d∥20,Ω + ∥div τ∥20,Ω

)1/2
is also a norm in H0(div ; Ω), equivalent to ∥ · ∥div ,Ω, that is, there exist c1, c2 > 0,

such that

c1∥τ∥div ,Ω ≤ |τ |div ,Ω ≤ c2∥τ∥div ,Ω, ∀ τ ∈ H0(div ; Ω). (1.1.8)

Finally, throughout our analysis, we will use C and c, with or without subs-

cripts, bars, tildes, or hats, to denote generic positive constants independent of the

discretization parameters. These constants may take different values in different

contexts.

1.2 Continuous Problem

As previously mentioned, we introduce an equivalent reduced version of (1.1.6).

To this end, we first redefine the pseudostress tensor as

σ := ∇u− 1

ν
p I in Ω, (1.2.1)
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which leads to the ν-scaled version of (1.1.4):

σd = ∇u in Ω, −divσ =
1

ν
f in Ω, u = uD on Γ, (tr (σ), 1)Ω = 0.

(1.2.2)

Notice that the pseudostress (1.2.1) is essentially a viscosity-scaled version of

the tensor (1.1.3) introduced in [11] and [26]. We adopt this new definition of σ

because, as we will see in Section 1.2, it ensures that the stability estimates for the

associated bilinear forms remain valid with constants independent of the viscosity.

Furthermore, this property guarantees that the theoretical convergence rates for all

unknowns are achieved with constants independent of ν. Based on this reasoning,

for the remainder of this paper, we consider σ as defined in (1.2.1) and focus on

deriving a finite element scheme that satisfies the conservation laws:

divu = 0 in Ω, and divσ = −1

ν
f in Ω.

To achieve this, we introduce the following variational formulation based on (1.2.2):

Find σ ∈ H0(div ; Ω), u ∈ H(div0; Ω), and φ ∈ H1
0(Ω) such that

(σd, τ d)Ω + (u+∇φ,div τ )Ω = ⟨τn,uD⟩Γ ,

(v +∇ψ,divσ)Ω = −1

ν
(f ,v +∇ψ)Ω,

(1.2.3)

for all τ ∈ H0(div ; Ω) and (v, ψ) ∈ H(div0; Ω)× H1
0(Ω).

From the fact that L2(Ω) = H(div0; Ω)⊕H1
0(Ω), it is clear that, after scaling by

ν, problems (1.1.6) and (1.2.3) are equivalent and consequently, problem (1.2.3) is

well-posed. However, for the sake of completeness, in what follows we establish its

unique solvability and stability.

As usual in the context of mixed problems, first we introduce the bilinear forms

a : H(div ; Ω) × H(div ; Ω) → R, b : H(div ; Ω) × (H(div0; Ω) × H1
0(Ω)) → R and

the functionals F : H(div ; Ω) → R and G : H(div0; Ω)× H1
0(Ω) → R, as follows:

a(σ, τ ) := (σd, τ d)Ω, b(τ , (v, ψ)) := (div τ ,v +∇ψ)Ω, (1.2.4)

F (τ ) := ⟨τn,uD⟩Γ and G(v, ψ) := −1

ν
(f ,v +∇ψ)Ω. (1.2.5)
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Then, problem (1.2.3) can be rewritten with a mixed structure as follows: Find

(σ, (u, φ)) ∈ H0(div ; Ω)× (H(div0; Ω)× H1
0(Ω)), such that:

a(σ, τ ) + b(τ , (u, φ)) = F (τ ) ∀ τ ∈ H0(div ; Ω),

b(σ, (v, ψ)) = G(v, ψ) ∀ (v, ψ) ∈ H(div0; Ω)× H1
0(Ω).

(1.2.6)

The following theorem establishes the well-posedness of problem (1.2.6).

Theorem 1.2.1 There exists a unique (σ, (u, φ)) ∈ H0(div ; Ω) × (H(div0; Ω) ×
H1

0(Ω)) solution to (1.2.6) with φ = 0 in Ω. Furthermore, there exists C > 0,

independent of ν, such that

|σ|div ,Ω + ∥u∥0,Ω ≤ C

(
∥f∥0,Ω
ν

+ ∥uD∥1/2,Γ
)
. (1.2.7)

Proof. In what follows, we apply the classical Babuška–Brezzi theory (see [22, Theo-

rem 2.3]) to establish the well-posedness of (1.2.6).

We begin by noting that, using the Cauchy–Schwarz inequality, estimate (1.1.8)

and [22, Theorem 1.7], we can readily deduce that the bilinear forms a and b, as

well as the functionals G and F , satisfy the following boundedness estimates:

|a(σ, τ )| ≤ |σ|div ,Ω|τ |div ,Ω, |b(τ , (v, ψ))| ≤ |τ |div ,Ω(∥v∥div,Ω + |ψ|1,Ω),

|G(v, ψ)| ≤ 1

ν
∥f∥0,Ω(∥v∥div,Ω + |ψ|1,Ω), |F (τ )| ≤ C∥uD∥1/2,Γ|τ |div ,Ω,

(1.2.8)

where C > 0 is a constant independent of ν. Furthermore, a simple rescaling by ν

allows us to deduce from [14, Lemma 2.3] that the following inf-sup condition holds:

sup
0 ̸=τ∈H0(div ;Ω)

b(τ , (v, ψ))

|τ |div ,Ω
≥ β(∥v∥div,Ω + |ψ|1,Ω) ∀ (v, ψ) ∈ H(div0; Ω)× H1

0(Ω),

(1.2.9)

where β > 0 is a constant independent of ν.

Next, we define the kernel of b as

V := {τ ∈ H0(div ; Ω) : b(τ , (v, ψ)) = 0 ∀ (v, ψ) ∈ H(div0; Ω)× H1
0(Ω)}.

Using the Helmholtz decomposition L2(Ω) = H(div0; Ω)⊕ H1
0(Ω), it follows that V
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can be characterized as

V = {τ ∈ H0(div ; Ω) : div τ = 0 in Ω}.

Moreover, for each τ ∈ V, the bilinear form a satisfies

a(τ , τ ) = |τ |2div ,Ω, (1.2.10)

which establishes the ellipticity of a on V.
In this way, from (1.2.8), (1.2.9), (1.2.10) and the classical Babuška–Brezzi theo-

ry, we readily obtain the unique solvability of problem (1.2.6).

Now, to deduce that φ = 0 in Ω, given ψ ∈ H1
0(Ω), we simply take τ =

(ψ − |Ω|−1(ψ, 1)Ω) I ∈ H0(div ; Ω) in the first equation of (1.2.6) and recall that

⟨n,uD⟩Γ = 0 (see (1.1.2)), to obtain

(∇ψ,∇φ)Ω = 0,

which together with the fact that ψ is arbitrary, implies that φ = 0 in Ω.

We conclude the proof by observing that estimate (1.2.7) is a direct consequence

of the Babuška–Brezzi theory and the fact that φ = 0. □

1.3 Galerkin scheme

In this section, we introduce and analyze the mass and momentum conserva-

tive Galerkin scheme for the mixed formulation (1.2.6). Moreover, we derive the

corresponding theoretical rates of convergence.

1.3.1 Discrete scheme

Let Th be a regular family of regular triangulations of the polygonal region Ω by

triangles T in R2 or tetrahedra in R3 of diameter hT , such that Ω = ∪{T : T ∈ Th}
and define h := max{hT : T ∈ Th}. Given an integer l ≥ 0 and a subset S of Rd,

we denote by Pl(S) the space of polynomials of total degree at most l defined on S.

Hence, for each T ∈ Th, we define the local Raviart–Thomas space of lowest order

and the Brezzi–Douglas–Marini (BDM) element of order 1, respectively as (see, for
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instance [6]):

RT0(T ) := [P0(T )]
d ⊕ P0(T )x and BDM1(T ) = [P1(T )]

d

where x := (x1, . . . , xd)
t is a generic vector of Rd.

In addition, we let Eh be the set of edges (in 2D) or faces (in 3D) of Th, whose
corresponding diameters are denoted he, and define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

We also let [[·]] be the usual jump operator across internal edges or faces defined for

piecewise continuous functions v, by

[[v]] = (v
∣∣
T+
)
∣∣
e
− (v

∣∣
T−
)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge or face. Then,

we introduce the well-known Crouzeix–Raviart space (see [15]):

Ψφ
h :=

{
vh : Ω → R : vh|T ∈ P1(T ), ∀T ∈ Th,

∫
e

[[vh]] = 0, ∀ e ∈ Eh(Ω)

and

∫
e

vh = 0, ∀e ∈ Eh(Γ)
}
,

(1.3.1)

equipped with the norm

|vh|h =
( ∑
T∈Th

|vh|21,T
)1/2

, ∀vh ∈ Ψφ
h .

In this way, defining the discrete spaces

Hσ
h := {τ h ∈ H(div ; Ω) : ctτ h ∈ BDM1(T ) ∀ c ∈ Rd, ∀T ∈ Th},

Hu
h := {zh ∈ H(div; Ω) : zh|T ∈ RT0(T ), ∀T ∈ Th},

Hσ
h,0 := Hσ

h ∩H0(div ; Ω), Hu
h,0 := Hu

h ∩H(div0; Ω),

(1.3.2)

the Galerkin scheme associated to (1.2.6) reads: Find (σh, (uh, φh)) ∈ Hσ
h,0×(Hu

h,0×
Ψφ
h), such that:
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a(σh, τ h) + bh(τ h, (uh, φh)) = F (τ h) ∀ τ h ∈ Hσ
h,0,

bh(σh, (vh, ψh)) = Gh(vh, ψh) ∀ (vh, ψh) ∈ Hu
h,0 ×Ψφ

h ,

(1.3.3)

where the form a and the functional F are defined in (1.2.4) and (1.2.5), respectively,

whereas bh : H0(div ; Ω)×H(h) → R and the functional Gh : H(h) → R are defined

as follows

bh(τ , (v, ψh)) := (div τ ,v +∇hψh)Ω, (1.3.4)

Gh(v, ψh) := −1

ν
(f ,v +∇hψh)Ω, (1.3.5)

where ∇h is the discrete gradient for discontinuous functions, that is, ∇hψh|T =

∇(ψh|T ), ∀T ∈ Th and H(h) := H(div0; Ω)× (H1
0(Ω) + Ψφ

h).

1.3.2 Well-posedness of the discrete scheme

In what follows we address the unique solvability and stability of problem (1.3.3)

by adapting to the discrete case the analysis described in Section 1.2. We begin by

noticing that using Hölder inequality, the form bh and the functional Gh are bounded

with the same constants as for b and G in (1.2.8).

Now we let Vh be discrete kernel of bh, that is

Vh := {τ h ∈ Hσ
h : bh(τ h, (vh, ψh)) = 0, ∀ (vh, ψh) ∈ Hu

h,0 ×Ψφ
h}.

Recalling from [3, Theorem 4.1] and [41, Theorem 4.9] that the following orthogonal

decomposition holds:

Qh = Hu
h,0 ⊕∇hΨ

φ
h , (1.3.6)

where Qh is the corresponding vectorial counterpart of the space

Qh := {q ∈ L2(Ω) : q|T ∈ P0(T ), ∀T ∈ Th},

and

∇hΨ
φ
h := {sh|T ∈ P0(T ) : ∃ vh ∈ Ψφ

h such that sh|T = ∇(vh|T ), ∀T ∈ Th},
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we observe that for each τ h ∈ Vh,

(div τ h,vh +∇hψh)Ω = 0, ∀ (vh, ψh) ∈ Hu
h,0 ×Ψφ

h ,

is equivalent to

(div τ h, zh)Ω = 0, ∀ zh ∈ Qh,

which implies that Vh can be characterized as follows

Vh := {τ h ∈ Hσ
h : div τ h = 0 in Ω}.

In this way, a satisfies

a(τ h, τ h) = |τ h|2div ,Ω ∀τ h ∈ Vh,

that is, a is elliptic on the kernel of bh.

Now we establish the discrete inf-sup condition of bh. To that end, we recall

from [6, Section 2.5] that there exist interpolator operators ΠRT
h : H1(Ω) → Hu

h

and ΠBDM
h : H1(Ω) → Xh := {τh ∈ H(div; Ω) : τh|T ∈ BDM1(T ), ∀T ∈ Th},

satisfying the approximation property

∥Π⋆
h(τ)− τ∥0,T ≤ chmT |τ |m,T , ∀ τ ∈ Hm(T ), ∀T ∈ Th, (1.3.7)

for all 1 ≤ m ≤ l⋆ and ⋆ ∈ {RT,BDM}, with lRT = 1 and lBDM = 2, and the

commutative property

div(Π⋆
h(τ)) = Ph(div τ), ∀τ ∈ H1(Ω), ∀ ⋆ ∈ {RT,BDM}, (1.3.8)

where Ph is the L2-projection on Qh, which satisfies

(v − Ph(v), zh)Ω = 0 ∀ zh ∈ Qh,

and the local approximation property

∥v − Ph(v)∥0,T ≤ Chm|v|m,T , ∀T ∈ Th, (1.3.9)
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for all 0 ≤ m ≤ 1 and for all v ∈ Hm(Ω). Notice that from (1.3.8) and (1.3.9) we

have that

∥div τ − div(Π⋆
h(τ))∥0,T ≤ Chm|div τ |m,T , ∀T ∈ Th,

for all 0 ≤ m ≤ 1 and for all τ ∈ H1(Ω) with div τ ∈ Hm(Ω).

In what follows we will employ a tensor version of ΠBDM
h , denoted by ΠBDM

h :

H1(Ω) → Hσ
h , which is defined row-wise by ΠBDM

h , and the vector version of Ph,
denoted by Ph : L

2(Ω) → Qh, defined component-wise by Ph.
Now we are in position of establishing the inf-sup condition of bh.

Lemma 1.3.1 There exists β̃ > 0, independent of h and ν, such that

sup
0 ̸=τh∈Hσ

h,0

bh(τ h, (vh, ψh))

|τ h|div ,Ω
≥ β̃(∥vh∥div,Ω + |ψh|h) ∀ (vh, ψh) ∈ Hu

h,0 ×Ψφ
h .

Proof.We proceed similary to the proof of [14, Lemma 3.2]. In fact, we let B ⊆ Rd be

a bounded and open convex domain such that Ω ⊂ B, and given (vh, ψh) ∈ Hu
h,0×Ψφ

h ,

we let z ∈ H1
0(B) be the unique weak solution of the auxiliary problem

−∆z = h(vh, ψh) in B, z = 0 on ∂B,

with

h(vh, ψh) :=

{
vh +∇hψh, in Ω,

0, in B\Ω.

It is well known that z ∈ H2(B) (see [29]) and

∥z∥2,Ω ≤ C∥h(vh, ψh)∥0,B = C∥vh +∇hψh∥0,Ω ≤ C (∥vh∥div,Ω + |ψh|h) . (1.3.10)

Note that as vh ∈ Hu
h,0, then in accordance with [6, Corollary 2.3.1], vh ∈ Qh. Now,

we define

τ̂ h := −ΠBDM
h (∇z|Ω) +

1

d|Ω|
(
tr (ΠBDM

h (∇z|Ω)), 1
)
Ω
I in Ω,

and observe from (1.3.8) and (1.3.10) that

div τ̂ h = vh +∇hψh ∈ Qh and |τ̂ h|div ,Ω ≤ Ĉ(∥vh∥div,Ω + |ψh|h).
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From the latter, we obtain

sup
0 ̸=τh∈Hσ

h,0

bh(τ h, (vh, ψh))

|τ h|div ,Ω
≥ b(τ̂ h, (vh, ψh))

|τ̂ h|div ,Ω
≥ Ĉ−1

∥vh∥2div,Ω + |ψh|2h
∥vh∥div,Ω + |ψh|h

≥ β̃(∥vh∥div,Ω + |ψh|h).
(1.3.11)

with β̃ > 0 independent of h and ν.

□

These properties and the Babuška–Brezzi theory allow us to conclude the well-

posedness of (1.3.3). This result is summarized in the following theorem.

Theorem 1.3.2 There exists a unique (σh, (uh, φh)) ∈ Hσ
h,0 × (Hu

h,0 ×Ψφ
h) solution

to the Galerkin scheme (1.3.3). In addition, there exists C > 0, independent of h

and ν, such that

|σh|div ,Ω + ∥uh∥0,Ω + |φh|h ≤ C

(
∥f∥0,Ω
ν

+ ∥uD∥1/2,Ω
)
.

Remark 1.3.3 Observe that the discrete space Hu
h,0 becomes

Hu
h,0 = {vh ∈ Hu

h : div vh = 0 in Ω},

which implies that the numerical scheme (1.3.3) produces exactly divergence-free

approximations for the velocity u.

Furthermore, from the second equation of (1.3.3) and the discrete Helmholtz

decomposition (1.3.6), we deduce that

(
div σh + ν−1f , zh

)
Ω
= 0 ∀ zh ∈ Qh.

This implies that div σh = −ν−1Ph(f), meaning that the method exactly preserves

the discrete equilibrium equation when f ∈ Qh. In other words, the scheme is mo-

mentum conservative whenever f ∈ Qh. Moreover, if f ∈ H1(Ω), from (1.3.9) we

obtain the estimate

∥ν−1f + div σh∥0,Ω = ν−1∥f −Ph(f)∥0,Ω ≤ cν−1h∥f∥1,Ω, (1.3.12)

showing that, for sufficiently smooth f , the momentum equation is approximated with
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an optimal rate of convergence.

We also emphasize that the achieved momentum conservation comes at the cost

of losing pressure robustness. More specifically, since our method enforces the equi-

librium equation in L2(Ω), the gradient component of the Helmholtz decomposition

of the source term f affects the solution, leading to a lack of pressure robustness, as

discussed in [37].

On the other hand, note that if (σh, (uh, φh)) is a solution to (1.3.3), φh is not

necessarily identically zero in Ω. However, as shown in Theorem 1.3.4, φh converges

to zero (see (1.3.16)). Furthermore, as demonstrated in Example 4, Section 1.5,

despite introducing an additional unknown, the proposed numerical scheme remains

slightly less expensive than the standard formulation studied in [11] and [26]. The

computational cost can be further reduced by employing the exactly divergence-free

discrete basis for Hu
h,0 introduced in [1], optimizing implementation efficiency.

Finally, we note that, to the best of the authors’ knowledge, the Helmholtz de-

composition (1.3.6) is only available in the literature for the lowest-order case. This

limitation prevents a straightforward extension of the above analysis to higher-order

cases.

1.3.3 Convergence analysis

We now analyze the convergence of (1.3.1) and establish the corresponding theo-

retical rate of convergence. We begin by noting that the gradient operator ∇ and

its discrete counterpart ∇h coincide in H1
0(Ω), which implies that

bh(τ , (v, ψ)) = b(τ , (v, ψ)), ∀ (τ , (v, ψ)) ∈ H(div ; Ω)× (H(div0; Ω)× H1
0(Ω)),

(1.3.13)

and

Gh(v, ψ) = G(v, ψ), ∀ (v, ψ) ∈ H(div0; Ω)× H1
0(Ω). (1.3.14)

Thus, if (σ, (u, φ)) ∈ H(div ; Ω) × (H(div0; Ω) × H1
0(Ω)) is the unique solution of

(1.2.6), we can replace b with bh and G with Gh in (1.2.6) without altering the

validity of the equations.

The following theorem establishes the theoretical rate of convergence for the

numerical scheme (1.3.3). Instead of relying on the a priori error estimate given,
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for instance, in [22, Theorem 2.6], we derive the estimate from scratch, utilizing

the orthogonality property of the scheme. This approach allows us to obtain error

bounds with constants independent of ν, which, as we shall see, differs from the

results in [14]. Moreover, it allows us to establish a superconvergence result for the

deviatoric part of σh.

Theorem 1.3.4 Let (σ, (u, 0)) ∈ H0(div ; Ω)× (H(div0; Ω)× H1
0(Ω))

and (σh, (uh, φh)) ∈ Hσ
h,0×Hu

h,0×Ψφ
h be the unique solutions of (1.2.6) and (1.3.3),

respectively, and assume that the exact solution satisfies σ ∈ H2(Ω) and u ∈ H1(Ω).

Then, there exist positive constants c1, c2 and c3, independent of ν and h, such that,

∥σd − σd
h∥0,Ω ≤ c1h

2|σ|2,Ω (1.3.15)

and

∥u− uh∥0,Ω + |φh|h ≤ c2h|σ|2,Ω + c3h|u|1,Ω. (1.3.16)

Proof. From (1.2.6), (1.3.3), (1.3.13), (1.3.14) and the fact that φ = 0 in Ω, we

readily obtain the orthogonality property:

((σ − σh)
d, τ d

h)Ω + (u− uh −∇hφh,div τ h)Ω = 0, ∀τ h ∈ Hσ
h,0,

(vh +∇hψh,div (σ − σh))Ω = 0, ∀(vh, ψh) ∈ Hu
h,0 ×Ψφ

h .

(1.3.17)

Now, let σ̂h := ΠBDM
h (σ) and ûh := ΠRT

h (u). From (1.3.8) and using that

divσ = − 1
ν
f in Ω and divσh = − 1

ν
Ph(f) in Ω (see Remark 1.3.3), it is clear that

div (σ̂h) = Ph(divσ) = −1

ν
Ph(f) = div (σh) in Ω,

thus div (σ̂h−σh) = 0 in Ω. Then, adding and subtracting σ̂h in the first equation

of (1.3.17) and taking τ h = σ̂h − σh, we deduce that

((σ̂h − σh)
d, (σ̂h − σh)

d)Ω = −((σ − σ̂h)
d, (σ̂h − σh)

d)Ω,

which implies

∥(σ̂h − σh)
d∥0,Ω ≤ ∥(σ − σ̂h)

d∥0,Ω.
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In this way, from the latter, the triangle inequality, estimate (1.3.7) and the regu-

larity of the mesh, we deduce that

∥(σ − σh)
d∥0,Ω ≤ 2∥(σ − σ̂h)

d∥0,Ω ≤ 2∥σ − σ̂h∥0,Ω ≤ c1h
2∥σ∥2,Ω,

with c1 > 0 in dependent of h and ν.

Now, to deduce (1.3.16) we add and subtract ûh in the first equation of (1.3.17)

to obtain

(ûh − uh −∇hφh,div τ h)Ω = −(u− ûh,div τ h)Ω − ((σ − σh)
d, τ d

h)Ω,

for all τ h ∈ Hσ
h,0. Then, from this identity and the discrete inf-sup condition (1.3.11)

we obtain

β̃(∥ûh − uh∥0,Ω + |φh|h) ≤ sup
0 ̸=τh∈Hσ

h,0

∣∣(u− ûh,div τ h)Ω + ((σ − σh)
d, τ d

h)Ω
∣∣

|τ h|div ,Ω
,

≤ C(∥u− ûh∥0,Ω + ∥(σ − σh)
d∥0,Ω),

which combined with (1.3.7), (1.3.15) and the triangle inequality imply (1.3.16). □

Remark 1.3.5 Recalling that σd = ∇u, the previous theorem confirms that the

method provides a superconvergent approximation for the velocity gradient. Specifi-

cally, we obtain the following estimate:

∥∇u− σd
h∥0,Ω ≤ c1h

2|σ|2,Ω,

where c1 is independent of ν.

1.4 Stokes problem with mixed boundary condi-

tions

Now we briefly discuss how to extend the method for the case of mixed boundary

conditions. To that end, now we let ΓD ⊆ ∂Ω and ΓN ⊆ ∂Ω satisfying |ΓN | ̸= 0,

|ΓD| ≠ 0, ΓD∩ΓN = ∅ and ΓD∪ΓN = ∂Ω, and consider the following Stokes problem
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with mixed boundary conditions:

−ν∆u+∇p = f in Ω, divu = 0 in Ω, u = uD on ΓD, (ν∇u−pI)n = 0 on ΓN ,

where the last equation on ΓN is the so-called do-nothing condition (see eg. [34,

Section 2.4]).

Introducing the pseudostress tensor (1.2.1) the equations above can be rewritten

equivalently as follows:

σd = ∇u in Ω, −divσ =
1

ν
f in Ω, u = uD on ΓD, σn = 0 on ΓN ,

(1.4.1)

which lead to the variational formulation: Find σ ∈ HN(div ; Ω), u ∈ H(div0; Ω)

and φ ∈ H1
0(Ω), such that

a(σ, τ ) + b(τ , (u, φ)) = FD(τ ), ∀τ ∈ HN(div ; Ω),

b(σ, (v, ψ)) = G(v, ψ), ∀(v, ψ) ∈ H(div0; Ω)× H1
0(Ω),

(1.4.2)

where a, b and G are defined in (1.2.4) and (1.2.5), whereas FD : HN(div ; Ω) → R
is given by

FD(τ ) := ⟨τn,uD⟩ΓD
, (1.4.3)

with

HN(div ; Ω) := {τ ∈ H(div ; Ω) : τn = 0 on ΓN},

and ⟨·, ·⟩ΓD
denoting the product of duality between the trace space H1/2(ΓD) and

its dual H−1/2(ΓD).

The well-posedness of (1.4.2) is established next.

Theorem 1.4.1 There exists a unique (σ, (u, φ)) ∈ HN(div ; Ω) × (H(div0; Ω) ×
H1

0(Ω)) solution to (1.4.2) with φ = 0 in Ω. Furthermore, there exists C > 0,

independent of ν, such that

|σ|div ,Ω + ∥u∥0,Ω ≤ C

(
∥f∥0,Ω
ν

+ ∥uD∥1/2,ΓD

)
. (1.4.4)

Proof. Employing similar arguments to those utilized in the proof of Theorem 1.2.1

it is possible to prove existence and uniqueness of solution of problem (1.4.2) and
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estimate (1.4.4). In particular, the ellipticity of the bilinear form a on the kernel of

b can be derived by combining (1.1.8) and [22, Lemma 2.5]. In addition, by taking

τ = ψI ∈ HN(div ; Ω) with ψ ∈ H1
0(Ω) in the second equation of (1.4.2), and

proceeding analogously to the proof of Theorem 1.2.1 we easily prove that φ = 0 in

Ω. We omit further details. □

As for the Galerkin discretization of problem (1.4.2), here we consider the spaces

defined in (1.3.1) and (1.3.2) and additionally let

Hσ
h,N := Hσ

h ∩HN(div ; Ω).

Then, the mass and momentum conservative Galerkin scheme associated to (1.4.2)

reads: Find (σh, (uh, φh)) ∈ Hσ
h,N × (Hu

h,0 ×Ψφ
h), such that

a(σh, τ h) + bh(τ h, (uh, φh)) = FD(τ h) ∀ τ h ∈ Hσ
h,N ,

bh(σh, (vh, ψh)) = Gh(vh, ψh) ∀ (vh, ψh) ∈ Hu
h,0 ×Ψφ

h ,

(1.4.5)

where the form a is defined in (1.2.4), bh and Gh are defined in (1.3.4) and (1.3.5),

respectively, and the functional FD is given by (1.4.3).

The well-posedness of (1.4.5), along with the derivation of the optimal conver-

gence rates, can be established with minor modifications to the analysis presented

in Sections 1.3.2 and 1.3.3. The following theorem summarizes these results, with

the proofs omitted for brevity.

Theorem 1.4.2 There exists a unique (σh, (uh, φh)) ∈ Hσ
h,N × (Hu

h,0×Ψφ
h) solution

to the Galerkin scheme (1.3.3). In addition, there exists C > 0, independent of h

and ν, such that

|σh|div ,Ω + ∥uh∥0,Ω + |φh|h ≤ C

(
∥f∥0,Ω
ν

+ ∥uD∥1/2,ΓD

)
.

In addition, if (σ, (u, 0)) ∈ HN(div ; Ω)×(H(div0; Ω)×H1
0(Ω)) is the unique solution

of (1.4.2) satisfying σ ∈ H2(Ω) and u ∈ H1(Ω), then there exist positive constants

c̃1, c̃2 and c̃3 independent of ν and h, such that,

∥σd − σd
h∥0,Ω ≤ c̃1h

2|σ|2,Ω



1.5 Numerical tests 27

and

∥u− uh∥0,Ω + |φh|h ≤ c̃2h|σ|2,Ω + c̃3h|u|1,Ω.

1.5 Numerical tests

In this section we present four numerical examples illustrating the performance

of our finite element scheme and confirming the theoretical rates of convergence. We

begin by mentioning that the numerical results that follow are attained by imposing

the condition of (tr (σh), 1)Ω = 0 through a penalty strategy using a scalar Lagrange

multiplier (adding one row and one column to the system). Also, the divergence-

free constraint for the velocity is imposed by means of an appropriate Lagrange

multiplier rh ∈ Qh. More precisely, we replace the numerical scheme (1.3.3) by the

system: Find (σh,uh, φh, rh, λh) ∈ Hσ
h,0 ×Hu

h ×Ψh ×Qh × R, such that:

a(σh, τ h) + bh(τ h, (uh, φh)) + λh(tr (τ h), 1)Ω = F (τ h),

bh(σh, (vh, ψh)) + (rh, div vh)Ω = G(vh, ψh),

(sh, divuh)Ω = 0,

ηh( tr (σh), 1)Ω = 0,

for all (τ h,vh, ψh, sh, ηh) ∈ Hσ
h×Hu

h,0×Ψφ
h×Qh×R. Our implementation is based on

Freefem++ code (see [32]), in conjunction with the direct linear solver UMFPACK

(see [16]).

Now we introduce some additional notations. In what follows, N stands for the

total number of degrees of freedom defining Hσ
h ×Hu

h,0 ×Ψφ
h ×Qh×R associated to

the system (1.3.3), or Hσ
h,N ×Hu

h,0 ×Ψφ
h ×Qh for the system (1.4.5). We denote the

individual errors by

e(σd) := ∥σd − σd
h∥0,Ω , e(u) := ∥u− uh∥0,Ω , e(p) := ∥p− ph∥0,Ω ,

e(φ) := |φh|h , e(f) := ∥f −Ph(f)∥0,Ω

where p is the exact pressure that can be recovered through the identity p =

−ν
d
tr (σ) and the approximate pressure ph is computed through the postprocessing
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formula ph = −ν
d
tr (σh).

In addition, we let r(%) be the experimental rate of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
,

where e(%) is any of the errors defined above and h and h′ are two consecutive

meshsizes with errors e and e′.

Example 1: Rates of convergence

The first example focuses on illustrating the performance of the two dimensional

mixed finite element scheme under a quasi-uniform refinement, by considering manu-

factured exact solution (u, p) in the domain Ω = (0, 1)2 given by

u(x1, x2) =

 π exp(x1) cos(πx2)

− exp(x1) sin(πx2)

 , p(x1, x2) = x31 + x32 − 0.5 .

In this case,

f =

 3x21 + νπ exp(x1) cos(πx2)(π
2 − 1)

3x22 − ν exp(x1) sin(π2x2)(π
2 − 1)

 .

In Table 1.1, we summarize the convergence history for a sequence of quasi-uniform

triangulations, considering the viscosity ν = 1 and ν =1.0E-3. We see there that

the rate of convergence provided by Theorem 1.3.4 is attained by all the unknowns.

We emphasize that, when comparing the errors obtained for ν = 1 and ν=1.0E-3,

the numerical results indicate that these errors are not amplified by the factor ν−1.

In addition, the l∞–norm of divuh in each mesh is close to 0 which shows that this

method is mass conserving. From the columns corresponding to ∥divσh + ν−1f∥0,Ω
and e(f), we observe that for ν = 1.0, both columns exhibit similar magnitudes.

In contrast, for ν=1.0E-3, the column corresponding to ∥divσh+ ν−1f∥0,Ω matches

the column for e(f) scaled by a factor of ν−1, and the convergence rate is of order

1. This numerical evidence confirms the theoretical prediction given in (1.3.12).

Example 2: Momentum conservation

The second example addresses the momentum conservation of the method when
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Numerical results for ν=1.0

N h e(σd) r(σd) e(u) r(u) e(p) r(p) e(φ) r(φh)
409 0.372 3.941E-1 – 1.138 – 3.253E-1 – 0.765 –
1637 0.190 0.741E-1 2.483 0.487 1.261 0.557E-1 2.619 0.323 1.279
6213 0.095 0.192E-1 1.944 0.246 0.987 0.148E-1 1.909 0.160 1.017
24445 0.049 0.046E-1 2.178 0.122 1.058 0.036E-1 2.132 0.080 1.052
97129 0.024 0.012E-1 1.898 0.062 0.970 0.009E-1 1.993 0.040 0.960
391577 0.014 0.003E-1 2.581 0.031 1.268 0.002E-1 2.447 0.020 1.280

∥divuh∥l∞ ∥divσh + ν−1f∥0,Ω e(f) r(f)
7.1E-15 7.500 7.531 –
5.7E-14 3.244 3.248 1.249
8.7E-14 1.662 1.662 0.966
2.3E-13 0.823 0.823 1.063
4.5E-13 0.416 0.417 0.977
9.1E-13 0.206 0.206 1.258

Numerical results for ν=1.0E-3

N h e(σd) r(σd) e(u) r(u) e(p) r(p) e(φ) r(φh)
409 0.372 6.083 – 1.148 – 1.418E-2 – 0.777 –
1637 0.190 1.276 2.320 0.488 1.261 0.300E-2 2.307 0.322 1.311
6213 0.095 0.323 1.983 0.246 0.987 0.072E-2 2.049 0.159 1.014
24445 0.049 0.078 2.139 0.122 1.058 0.017E-2 2.159 0.080 1.049
97129 0.024 0.019 1.999 0.062 0.970 0.005E-2 1.934 0.040 0.960
391577 0.014 0.005 2.526 0.031 1.268 0.001E-2 2.537 0.020 1.280

∥divuh∥l∞ ∥divσh + ν−1f∥0,Ω e(f) r(f)
9.3E-15 288.009 0.288 –
2.8E-14 132.239 0.132 1.158
5.7E-14 65.772 0.065 1.008
1.7E-13 32.422 0.032 1.068
3.4E-13 16.399 0.016 0.989
9.1E-13 8.119 0.008 1.257

Table 1.1: Example 1: Degrees of freedom, mesh sizes, errors, convergence rates,
L∞-norm of divuh, L

2-norm of the discrete momentum equation, error in the pro-
jection of f , and its convergence rate for the Galerkin scheme with ν = 1.0 and ν =
1.0E-3.

the datum f ∈ Qh. To that end, we consider the manufactured solution (u, p) in the



30

domain Ω = (0, 1)2 given by:

u(x1, x2) =

 x22

−x21

 , p(x1, x2) = x1 + x2 − 1 ,

so that the datum f becomes,

f =

 1− 2ν

1 + 2ν

 ∈ Qh.

We run the code for viscosity values ν = 1.0 and ν = 1.0E-3, using a sequence

of quasi-uniform triangulations.

Table 1.2 presents the l∞-norm of divuh and divσh+ ν−1f . From these results,

we observe that both quantities remain close to zero, confirming that the method is

mass conservative and preserves momentum when f ∈ Qh.

Furthermore, by comparing both tables, we observe that the l∞-norm of divσh+

ν−1f scales with ν−1, whereas the l∞-norm of divuh appears to remain unaffected

by ν.

Example 3: Lack of pressure robustness

The third example examines the lack of pressure robustness of the method. To

this end, we use the data presented in [35, Example 1.1]. Specifically, we consider

the exact solutions:

u(x1, x2) = 0 and p(x1, x2) = Ra

(
x32 −

1

2
x22 + x2 −

7

12

)
,

which results in the forcing term:

f =

 0

Ra(1− x2 + 3x22)

 ∈ Qh,

where Ra > 0 is a given parameter that affects only the pressure and will be assigned

different values in the analysis.

In Table 1.3 we present the errors for each variable for different values of Ra.
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Mass and momentum conservation for ν=1.0

h ∥divuh∥l∞ ∥divσh + ν−1f∥l∞

0.372 1.78E-15 3.55E-15
0.190 4.44E-15 1.24E-14
0.095 1.42E-14 2.84E-14
0.049 2.84E-14 1.14E-13
0.024 5.68E-14 2.27E-10
0.014 1.42E-13 4.55E-10

Mass and momentum conservation for ν=1.0E-3

h ∥divuh∥l∞ ∥divσh + ν−1f∥l∞

0.372 1.78E-15 2.96E-12
0.190 3.55E-15 7.05E-12
0.095 1.07E-14 1.82E-11
0.049 2.84E-14 4.37E-11
0.024 5.68E-14 1.02E-10
0.014 1.26E-13 2.91E-10

Table 1.2: Example 2: Mesh sizes, L∞-norm of divuh and divσh + ν−1f , with ν
= 1.0 and ν = 1.0E-3.

We consider a fix triangulation of size h = 0.0244. There, it can be appreciated that

when Ra increases, all the errors increase in the same order, which confirms the

aforementioned lack of pressure robustness of the method.

Lack of pressure robustness

Ra e(σd) e(u) e(p) e(φ)
1.0E+0 1.593E-5 8.903E-8 2.759E-5 4.123E-8
1.0E+1 1.593E-4 8.903E-7 2.759E-4 4.123E-7
1.0E+2 1.593E-3 8.903E-6 2.759E-3 4.123E-6
1.0E+3 1.593E-2 8.903E-5 2.759E-2 4.123E-5
1.0E+4 1.593E-1 8.903E-4 2.759E-1 4.123E-4

Table 1.3: Example 3: Errors for each variable, considering different values of Ra.

Example 4: Backward-facing step flow

Finally, the fourth example examines mass loss in the standard backward-facing

step flow test, similarly as in [5]. For this test, we consider a rectangular domain

Ω = [0, 10]× [0, 1] with a re-entrant corner at (2, 0.5). The boundary Γ is partitioned



32

into three segments: the inflow boundary Γin, the outflow boundary Γout, and the

wall boundary Γwall, where Γwall = Γ \
(
Γin ∪ Γout

)
(see Figure 1.1). We consider

Γin
Γout

Γwall

Γwall

1.0

0.5

10.02.0

S

Figure 1.1: Example 4: Geometry for the backward-facing step flow test.

ν = 1.0 and f(x1, x2) = 0 in Ω. The boundary conditions are prescribed as follows:

a parabolic inflow profile uD(x1, x2) = (8(x2 − 0.5)(1 − x2), 0)
t on Γin, a no-slip

condition uD(x1, x2) = 0 on Γwall, and, unlike [5], a do-nothing boundary condition

is imposed on Γout, given by σn = 0 on Γout.

To evaluate mass conservation in the discrete solution, we measure the total mass

flow across a sequence of vertical surfaces connecting the top and bottom bounda-

ries of the computational domain. The line labeled “S” in Figure 1.1 illustrates a

representative example of such a surface for the test problem.

Since divu = 0 in Ω, from the divergence theorem it follows that∫
Γin

u · n =

∫
S

u · nS,

for any S connecting the top and bottom walls of the domain. Then, suggested

by the above, in what follows, mass conservation in the discrete solution will be

quantified by the percentage mass loss across the surface S, defined as

%mloss := 100

∣∣∣∣∫
Γin

uh · n−
∫
S

uh · nS
∣∣∣∣∣∣∣∣∫

Γin

uh · n
∣∣∣∣ . (1.5.1)

We compare the mass loss in (1.4.5) against the standard discrete pseudostress-based

scheme for (1.4.1), formulated as follows: find σh ∈ Hσ
h,N and uh ∈ Qh such that

(σd
h, τ

d
h)Ω + (uh,div τ h)Ω = ⟨τ hn,uD⟩ΓD

, ∀τ h ∈ Hσ
h,N ,

(vh,divσh)Ω = −1

ν
(f ,vh)Ω, ∀vh ∈ Qh,

(1.5.2)
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with ΓN = Γout and ΓD = Γ \ Γout.
We use a computational grid consisting of 120.926 triangles with a mesh size of

h = 0.0212, leading to a total of N = 1.214.540 degrees of freedom for the mass-

conservative scheme (1.4.5) and N = 1.274.123 for (1.5.2). Notice that, despite the

fact that (1.4.5) involves three unknowns while (1.5.2) considers only two, the former

is slightly less computationally expensive than the latter.

The results of our study are summarized in Figure 1.2, where we compare the

mass losses obtained using formulation (1.4.5) with those from (1.5.2), considering

100 lines S equally distributed in Ω. The figure clearly demonstrates a significant

improvement in mass conservation, as quantified by the percent mass loss formula

(1.5.1). Specifically, in (1.4.5), the maximum mass loss remains below 0.1%, whereas

in (1.5.2), it exceeds 1.0%.

In Figure 1.3, we present the pressure distribution (top panel), velocity mag-

nitude (center panel), and streamlines (bottom panel) obtained using the scheme

(1.4.5). The results exhibit the expected behavior: high pressure near the inlet, a

characteristic parabolic velocity profile throughout the full length of the domain

with higher velocity near the inlet, and the formation of the expected vortex below

the re-entrant corner.
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Figure 1.2: Example 4: Comparison of mass losses in (1.4.5) and (1.5.2) using 100
equally spaced lines in Ω.
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Figure 1.3: Example 4: Pressure (top panel), velocity magnitude (center panel) and
streamlines (bottom panel).



Chapter 2

A momentum and mass

conservative pseudostress-based

mixed finite element method for

the Navier–Stokes problem

In this chapter, we extend the analysis provided in Chapter 1 for the Stokes

problem to the Navier–Stokes problem.

2.1 Preliminaries

In this section we introduce some notations and definitions that will be employed

for the rest of the chapter.

Let Ω ⊆ R2, be a bounded domain with a polygonal connected boundary Γ, and

let n be the outward unit normal vector on Γ. We will use standard notations for

the Lebesgue spaces Lp(Ω), with p > 1 and the Sobolev spaces Wr,p(Ω) with r ≥ 0,

endowed with the norms ∥ · ∥0,p;Ω and ∥ · ∥r,p;Ω, respectively. Note that W0,p(Ω) =

Lp(Ω) and if p = 2, we write Hr(Ω) instead of Wr,2(Ω), with the corresponding

Lebesgue and Sobolev norms, denoted by ∥ · ∥0,Ω and ∥ · ∥r,Ω, respectively. We also

write | · |r,Ω for the Hr-seminorm. On the other hand, Wr,p
0 (Ω) denotes the closure

in Wr,p(Ω) of all distribution with compact support in Ω which belongs to Wr,p(Ω).

In addition, H1/2(Γ) is the trace space of functions of H1(Ω), and H−1/2(Γ) is its

35
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dual. The corresponding duality product between H1/2(Γ) and H−1/2(Γ) is denoted

by ⟨·, ·⟩Γ. Furthermore, we will denote by S and S the corresponding vectorial and

tensorial counterparts of the generic scalar functional space S. In turn, for any two

vector fields v = (vi)i=1,2 and w = (wi)i=1,2 we define the gradient, divergence and

tensor product operators, as follows

∇v :=

(
∂vi
∂xj

)
i,j=1,2

, div v :=
2∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,2.

Furthermore, for arbitrary tensor fields τ = (τij)i,j=1,2 and ζ = (ζij)i,j=1,2, div τ is

defined as the divergence operator div acting along the rows of τ . The transpose,

trace, tensor product, and deviatoric tensor are defined respectively as

τ t := (τ ji)j,i=1,2, tr (τ ) :=
2∑
i=1

τii, τ : ζ :=
2∑

i,j=1

τijζij, and τ d := τ− 1

2
tr (τ )I,

where I is the identity tensor in R2×2. For simplicity, in what follows, we will denote

(v, w)Ω :=

∫
Ω

vw, (v,w)Ω :=

∫
Ω

v ·w, and (τ , ζ)Ω :=

∫
Ω

τ : ζ.

On the other hand, given p > 1, we define the Banach space Hp(div; Ω) as

Hp(div; Ω) := {u ∈ Lp(Ω) : divu ∈ L2(Ω)},

equipped with the norm

∥u∥p,div;Ω :=
{
∥u∥20,p;Ω + ∥divu∥20,Ω

}1/2
.

In particular, for the case p = 2, we simply denote H(div; Ω) = H2(div; Ω), and

define the subspace

Hp(div0; Ω) := {u ∈ Hp(div; Ω) : divu = 0 in Ω}.

Additionally, we make use of the tensor version of H(div; Ω), namely

H(div ; Ω) := {τ ∈ L2(Ω) : div τ ∈ L2(Ω)},
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whose norm will be denoted ∥ · ∥div ;Ω. In turn, given p > 1, in what follows we will

also use the non-standard Banach space H(div p; Ω), defined by

H(div p; Ω) := {τ ∈ L2(Ω) : div τ ∈ Lp(Ω)},

endowed with the norm

∥τ∥p,div ;Ω :=
{
∥τ∥20,Ω + ∥div τ∥20,p;Ω

}1/2
.

The rest of this chapter is organized as follows: In Section 2.2 we present the main

aspects of the continuous problem. We reformulate the problem as an equivalent

set of equations and derive the mixed variational formulation. In Section 2.3 we

introduce the fixed-point strategy and apply, firstly, the classical Banach–Nečas–

Babuška theorem, and secondly, the Banach fixed-point theorem, to show that the

associated fixed-point operator is well-defined and that the continuous problem is

uniquely solvable, respectively. Next, in Section 2.4 we introduce and analyze the

associated Galerkin scheme by mimicking the theory developed for the continuous

problem. Furthermore, we establish the corresponding a priori error estimate and

prove the optimal convergence of the method. Finally, in Section 2.5 we present

several numerical results illustrating the good performance of our scheme.

2.2 The model problem and its variational formu-

lation

In this section we present the model problem and derive the variational formu-

lation. We consider the stationary Navier–Stokes equations, that is

−ν∆u+ (u · ∇)u+∇p = f in Ω,

divu = 0 in Ω,

u = uD on Γ,

(p, 1)Ω = 0,

(2.2.1)
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where the unknowns are the velocity field u and the pressure p of a fluid occupying

the region Ω. The given data are ν > 0 describing the fluid viscosity, an external

force f acting on Ω, and the boundary velocity uD on Γ. Note that uD must satisfy

the compatibility condition

(uD · n, 1)Γ = 0, (2.2.2)

which comes from the incompressibility condition of the fluid.

Now, in order to derive our mixed approach, we begin by introducing the pseudo-

stress tensor

σ := ∇u− 1

ν
(u⊗ u)− 1

ν
p I in Ω. (2.2.3)

Observe that from the incompressibility condition tr (∇u) = divu = 0 in Ω, there

hold

div (u⊗ u) = (u · ∇)u in Ω and tr (σ) = −1

ν
(tr (u⊗ u) + 2p) in Ω.

According to the above, we can rewrite equations (2.2.1), equivalently, as follows

σd = ∇u− 1

ν
(u⊗ u)d in Ω, −div σ =

1

ν
f in Ω,

u = uD on Γ, (tr (σ), 1)Ω = −1

ν
(tr (u⊗ u), 1)Ω,

(2.2.4)

where the unknowns are the velocity u and the tensor σ. The pressure can be easily

calculated as a postprocess of the solution using

p = −1

2
(tr (u⊗ u) + ν tr (σ)) in Ω. (2.2.5)

We now proceed to derive our momentum and mass conservative mixed varia-

tional formulation. Initially we recall from [12, Section 2.3] the weak formulation of

(2.2.4). To that end, we define the spaces X := H(div 4/3; Ω), M := L4(Ω) and

X0 := H0(div 4/3; Ω) := {τ ∈ H(div 4/3; Ω) : (tr (τ ), 1)Ω = 0},

and observe that the following descomposition holds:

X = X0 ⊕ P0(Ω)I, (2.2.6)
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where P0(Ω) is the space of constant polynomials on Ω.

Equivalently, each τ ∈ X can be descomposed as τ = τ 0 + dI, with

τ 0 := τ −
(

1

2|Ω|
(tr τ , 1)Ω

)
I ∈ X0 and d :=

1

2|Ω|
(tr τ , 1)Ω ∈ R. (2.2.7)

In particular, decomposing σ in (2.2.4) as σ = σ0 + cI, with σ0 ∈ X0, we deduce

from (2.2.7) and the last equation in (2.2.4) that c is given explicity in terms of u

as

c = − 1

2ν|Ω|
(tr (u⊗ u), 1)Ω,

and thus,

σ = σ0 −
(

1

2ν|Ω|
(tr (u⊗ u), 1)Ω

)
I. (2.2.8)

In this way, since σd = σd
0 and divσ = divσ0, throughout the rest of the paper

we rename σ0 as σ ∈ X0 and realize that the first, second and third equations of

(2.2.4) remain unchanged.

Thus, multiplying the first equation of (2.2.4) by a test function τ ∈ X, inte-
grating by parts, utilizing the Dirichlet boundary condition u = uD on Γ, and the

identity σd : τ = σd : τ d, we obtain

(σd, τ d)Ω + (div τ ,u)Ω +
1

ν
(u⊗ u, τ d)Ω = ⟨τn,uD⟩Γ, ∀ τ ∈ X.

In addition, the equilibrium equation −div σ =
1

ν
f is imposed weakly as follows

(div σ,v)Ω = −1

ν
(f ,v)Ω ∀v ∈ M.

Therefore, the variational formulation of (2.2.4) is as follows: Find (σ,u) ∈ X0×M,

such that

(σd, τ d)Ω + (div τ ,u)Ω +
1

ν
(u⊗ u, τ d)Ω = ⟨τn,uD⟩Γ,

(div σ,v)Ω = −1

ν
(f ,v)Ω,

(2.2.9)

for all (τ ,v) ∈ X×M.



40

Now, let us consider the Helmholtz–Weyl decomposition (see [40, Theorem 4.4]):

L4(Ω) = H4(div0; Ω)⊕∇W 1,4
0 (Ω). (2.2.10)

Our aim is to reformulate (2.2.9) to obtain a numerical scheme that conserves mass

and momentum, using the decomposition (2.2.10). Given that u,v ∈ L4(Ω) and

thanks to the previous decomposition (2.2.10), we know that there exist w, z ∈
H4(div0; Ω) and φ, ψ ∈ W 1,4

0 (Ω) such that u = w+∇φ and v = z+∇ψ. Therefore,
our problem reduces to: Find (σ, (w, φ)) ∈ X0 × (V0 ×Ψ0) such that:

(σd, τ d)Ω + (div τ ,w +∇φ)Ω +
1

ν
((w +∇φ)⊗ (w +∇φ), τ d)Ω = ⟨τn,uD⟩Γ,

(div σ, z+∇ψ)Ω = −1

ν
(f , z+∇ψ)Ω,

(2.2.11)

for all (τ , (z, ψ)) ∈ X× (V0 ×Ψ0), where

V0 := H4(div0; Ω) and Ψ0 := W1,4
0 (Ω).

On the other hand, we recall from [18, Lemma B.66] the classic Poincaré inequality

∥v∥1,p;Ω ≤ Cp,Ω∥∇v∥0,p;Ω ∀ v ∈ W1,p
0 (Ω), (2.2.12)

with 1 ≤ p < +∞ and Cp,Ω > 0; for p = 2, we denote C2,Ω = CΩ. This inequality

proves that on W1,p
0 (Ω), the seminorm |v|1,p;Ω is equivalent to the usual norm ∥v∥1,p;Ω,

i.e., ∥v∥1,p;Ω ∼ |v|1,p;Ω = ∥∇v∥0,p;Ω, which will be used in the subsequent results.

Additionally, we will make use of the following result to prove the equivalence of

the problems (2.2.9) and (2.2.11).

Lemma 2.2.1 There exists β0 > 0, such that

sup
0̸=ψ∈W 1,4/3

0 (Ω)

(∇ψ,∇φ)Ω
|ψ|1,4/3;Ω

≥ β0|φ|1,4;Ω ∀φ ∈ W1,4
0 (Ω). (2.2.13)

Proof. In fact, given φ ∈ W1,4
0 (Ω), we observe that ∇φ|∇φ|2 ∈ L4/3(Ω), because

(|∇φ|∇φ|2|4/3, 1)Ω = (|∇φ|4/3|∇φ|8/3, 1)Ω = (|∇φ|4, 1)Ω < +∞.
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Then, again thanks to [40, Theorem 4.4], we know that

L4/3(Ω) = H4/3(div0; Ω)⊕∇W
1,4/3
0 (Ω),

so that there exist t ∈ H4/3(div0; Ω) and χ ∈ W
1,4/3
0 (Ω) such that

∇φ|∇φ|2 = t+∇χ (2.2.14)

and also, since the decomposition is stable (see [23, Lemma 3.20]), there exists a

constant c > 0 such that

∥t∥4/3,div;Ω + |χ|1,4/3;Ω ≤ c∥∇φ|∇φ|2∥0,4/3;Ω = c|φ|31,4;Ω. (2.2.15)

So, using (2.2.14), integration by parts and (2.2.15) we obtain that

sup
0̸=ψ∈W 1,4/3

0 (Ω)

(∇ψ,∇φ)Ω
|ψ|1,4/3;Ω

≥ (∇χ,∇φ)Ω
|χ|1,4/3;Ω

=
((∇φ|∇φ|2 − t),∇φ)Ω

|χ|1,4/3;Ω

≥ (∇φ|∇φ|2,∇φ)Ω − (t,∇φ)Ω
c|φ|31,4;Ω

=
|φ|41,4;Ω
c|φ|31,4;Ω

= β0|φ|1,4;Ω.

where β0 := 1/c. □

Observe that if (σ, (w, φ)) ∈ X0×(V0×Ψ0) is a solution to (2.2.11), then taking

τ = ψ I, with ψ ∈ W
1,4/3
0 (Ω) in the first equation of (2.2.11), and using the fact that

τ d = (ψ I)d = 0, ⟨ψn,uD⟩Γ = 0 and div (ψ I) = ∇ψ, it follows that

(∇ψ,∇φ)Ω = 0, ∀ψ ∈ W
1,4/3
0 (Ω).

Then, thanks to the inf-sup condition (2.2.13), it follows that ∇φ = 0 in Ω, i.e. φ is

constant in Ω. However, as φ ∈ W
1,4/3
0 (Ω) it follows that φ = 0 in Ω and (σ,u) is a

solution of (2.2.9).

Conversely, if (σ,u) ∈ X0 × M is a solution to (2.2.9), from the Helmholtz

descomposition (2.2.10), the velocity u can descomposed as follows

u = w +∇φ in Ω,
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with w ∈ V0 and φ ∈ Ψ0. Therefore, (σ, (w, φ)) satisfies (2.2.11). Proceeding

exactly as before, one can deduce that φ = 0 in Ω, which implies that u = w ∈ V0

and thus (σ, (u, φ)) is a solution to (2.2.11). In this way, we have proved the following

Lemma

Lemma 2.2.2 If (σ,u) ∈ X0 × M is a solution to (2.2.9), then u ∈ V0 and

(σ, (u, 0)) is a solution to (2.2.11). Conversely, if (σ, (u, φ)) ∈ X0 × (V0 × Ψ0)

is a solution to (2.2.11), then φ = 0 in Ω and (σ,u) is a solution to (2.2.9).

As a consequence of the previous lemma, in what follows we focus on studying the

system (2.2.11). Furthermore, from the decomposition (2.2.6), the compatibility con-

dition (2.2.2), observe that both sides of the first equation of (2.2.11) are explicitly

cancelled when τ ∈ P0(Ω) I. Therefore, we see that testing the first equation of

(2.2.11) with τ ∈ X is equivalent to testing with τ ∈ X0.

In this way, defining the forms a : X×X → R, b : X×N → R, c : N×N×X → R
and the functionals F : X → R and G : N → R, respectively as follows

a(σ, τ ) := (σd, τ d)Ω, b(τ , (v, ψ)) := (div τ ,v +∇ψ)Ω, (2.2.16)

c((w, φ); (v, χ), τ ) :=
1

ν
((w +∇φ)⊗ (v +∇χ), τ d)Ω, (2.2.17)

F (τ ) := ⟨τn,uD⟩Γ and G(v, ψ) := −1

ν
(f ,v +∇ψ)Ω, (2.2.18)

where

N := V0 ×Ψ0,

we rewrite (2.2.11) equivalently as the variational problem: Find (σ, (u, φ)) ∈ X0 ×
N, such that:

a(σ, τ ) + b(τ , (u, φ)) + c((u, φ); (u, φ), τ ) = F (τ ) ∀ τ ∈ X0,

b(σ, (v, ψ)) = G(v, ψ) ∀ (v, ψ) ∈ N.

(2.2.19)

Remark 2.2.3 Observe that according to (2.2.5) and (2.2.8), the post-processing

formula for the pressure p reduces to

p = −1

2

(
ν tr (σ) + tr (u⊗ u)− 1

|Ω|
(tr (u⊗ u), 1)Ω

)
in Ω.
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2.3 Analysis of the continuous problem

In this section we prove the well-posedness of problem (2.2.19), to that end we

apply the Banach fixed-point theorem to obtain both, existence and uniqueness of

solution of (2.2.19).

We first recall from [42, Theorem 1.3.3] the following classical estimate that will

be used in the next results:

∥w∥0,r,Ω ≤ CSob∥w∥1,Ω ∀w ∈ H1(Ω), for r ≥ 1 (2.3.1)

with CSob > 0 depending only on |Ω|.

In turn, from [12, Lemma 3.1], exists Cd > 0, such that the following inequality

holds

Cd∥τ∥20,Ω ≤ ∥τ d∥20,Ω + ∥div τ∥20,4/3;Ω ∀ τ ∈ X0. (2.3.2)

which in particular implies that the seminorm

|τ |4/3,div ;Ω :=
{
∥τ d∥20,Ω + ∥div τ∥20,4/3;Ω

}1/2 ∀ τ ∈ X0, (2.3.3)

is a norm in X0, equivalent to the norm ∥ · ∥4/3,div ;Ω. According to this, in what

follows we equip the space X0 with the norm | · |4/3,div ;Ω. In turn, we endow the

product space N with the norm

∥(v, ψ)∥N := ∥v∥4,div;Ω + |ψ|1,4;Ω.

Thus, from the Hölder inequality

|(f, g)Ω| ≤ ∥f∥0,p;Ω∥g∥0,q;Ω ∀ f ∈ Lp(Ω),∀ g ∈ Lq(Ω), with
1

p
+

1

q
= 1,

we can easily deduce that

|a(σ, τ )| ≤ |σ|4/3,div ;Ω|τ |4/3,div ;Ω ∀σ, τ ∈ X0, (2.3.4)

|b(τ , (v, ψ))| ≤ |τ |4/3,div ;Ω∥(v, ψ)∥N ∀ τ ∈ X0,∀ (v, ψ) ∈ N, (2.3.5)
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|c((w, φ); (v, ψ), τ )| ≤ 1

ν
∥(w, φ)∥N∥(v, ψ)∥N|τ |4/3,div ;Ω ∀ τ ∈ X0, ∀ (w, φ), (v, ψ) ∈ N,

(2.3.6)

and

|G(v, ψ)| ≤ 1

ν
∥f∥0,4/3;Ω∥(v, ψ)∥N. (2.3.7)

where we use the fact that

∥v +∇ψ∥0,4;Ω ≤ ∥v∥4,div;Ω + |ψ|1,4;Ω = ∥(v, ψ)∥N ∀ (v, ψ) ∈ N.

Moreover, thanks to [12, Lemma 3.5], it follows that

|F (τ )| ≤ CF∥uD∥1/2,Γ|τ |4/3,div ;Ω, (2.3.8)

where CF is a positive constant depending on CSob and Cd.

We now let V be the kernel of b, that is

V := {τ ∈ X0 : b(τ , (v, ψ)) = 0, ∀ (v, ψ) ∈ N}

= {τ ∈ X0 : (div τ ,v +∇ψ)Ω = 0, ∀ (v, ψ) ∈ N}.

It is clear that thank to (2.2.10), V can be characterized as follows

V = {τ ∈ X0 : div τ = 0 in Ω}.

In turn, it follows easily from the definition of the bilinear form a (cf. (2.2.16)) that

a(τ , τ ) = |τ |24/3,div ;Ω ∀ τ ∈ V, (2.3.9)

thus, a is elliptic on V.
Next, we establish the inf-sup condition of the bilinear form b through the fol-

lowing lemma.

Lemma 2.3.1 There exists β > 0, such that

sup
0 ̸=τ∈X0

b(τ , (v, ψ))

|τ |4/3,div ;Ω

≥ β∥(v, ψ)∥N ∀ (v, ψ) ∈ N. (2.3.10)

Proof. We proceed similarly to the proof of Reference [12, Lemma 3.3]. In fact, given
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(v, ψ) ∈ N, we let h(v, ψ) := |v +∇ψ|2(v +∇ψ) and observe that

(|h(v, ψ)|4/3, 1)Ω = (|v +∇ψ|8/3|v +∇ψ|4/3, 1)Ω = (|v +∇ψ|4, 1)Ω < +∞,

which implies that h(v, ψ) ∈ L4/3(Ω). Then, defining

τ̂ = −∇z+
1

2|Ω|
(div z, 1)ΩI ∈ L2(Ω), (2.3.11)

with z ∈ H1
0(Ω) being the unique solution of the variational problem

(∇z,∇w)Ω = (h(v, ψ),w)Ω ∀w ∈ H1
0(Ω), (2.3.12)

it follows that

div τ̂ = h(v, ψ) ∈ L4/3(Ω), (tr (τ̂ ), 1)Ω = 0, (2.3.13)

and, consequently, τ̂ ∈ X0.

On the other hand, from (2.3.12) with w = z and the Hölder inequality, we

obtain

|z|21,Ω = (∇z,∇z)Ω = (h(v, ψ), z)Ω ≤ ∥h(v, ψ)∥0,4/3;Ω∥z∥0,4;Ω

which together with (2.3.1) with r = 4 and the Poincaré inequality (2.2.12) with

p = 2, implies

∥z∥1,Ω ≤ CSobC
2
Ω∥h(v, ψ)∥0,4/3;Ω = CSobC

2
Ω∥v +∇ψ∥30,4;Ω.

Based on the latter and in accordance with (2.3.3) and (2.3.11), it readily follows

that

|τ̂ |4/3,div ;Ω ≤
{
∥τ̂∥20,Ω + ∥div τ̂∥20,4/3;Ω

}1/2 ≤ (C + 1)1/2∥h(v, ψ)∥0,4/3;Ω
= C̃∥v +∇ψ∥30,4;Ω,

(2.3.14)

with C̃ = (C + 1)1/2. In addition, we observe that by (2.2.10), and [23, Definition

3.13, Lemma 3.20], there exist a constant C > 0, such that

∥(v, ψ)∥N = ∥v∥4,div;Ω + |ψ|1,4;Ω ≤ C∥v +∇ψ∥0,4;Ω. (2.3.15)
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In this way, from (2.3.13), (2.3.14), and the identity (2.3.15), we obtain

sup
0̸=τ∈X0

b(τ , (v, ψ))

|τ |4/3,div ;Ω

≥ b(τ̂ , (v, ψ))

|τ̂ |4/3,div ;Ω

≥ C̃−1
∥v +∇ψ∥40,4;Ω
∥v +∇ψ∥30,4;Ω

= C̃−1∥v +∇ψ∥0,4;Ω

≥ β∥(v, ψ)∥N,

with β = C̃−1C−1 > 0. □

2.3.1 A fixed point strategy

We begin the solvability analysis of (2.2.19) by introducing the bounded set

K :=

{
(v, ψ) ∈ N : ∥(v, ψ)∥N ≤ 2

γ

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)}
, (2.3.16)

with γ and CF being the positive constant defined below in (2.3.21) and (2.3.8),

respectively. Then, we define our operator as

T : K → K, (w, ϕ) → T(w, ϕ) = (u, φ), (2.3.17)

where given (w, ϕ) ∈ K, (u, φ) is the second component of the solution of the

linearized version of problem (2.2.19): Find (σ, (u, φ)) ∈ X0 ×N, such that

a(σ, τ ) + b(τ , (u, φ)) + c((w, ϕ); (u, φ), τ ) = F (τ ) ∀ τ ∈ X0,

b(σ, (v, ψ)) = G(v, ψ) ∀ (v, ψ) ∈ N.

(2.3.18)

Hence, it is not difficult to see that (σ, (u, φ)) ∈ X0 ×N is a solution of (2.2.19) if

and only if (u, φ) is a fixed-point of T, that is

T(u, φ) = (u, φ).

In this way, in what follows we focus on proving that T possesses a unique fixed-

point. Before proceeding with the solvability analysis, we prove the well-definiteness

of the fixed-point operator, for which, according to the definition of T, it is sufficient

to prove that the problem (2.3.18) is well-posed.
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Let us now define the bilinear form A : (X0 ×N)× (X0 ×N) → R given by

A((σ, (u, φ)), (τ , (v, ψ))) := a(σ, τ ) + b(τ , (u, φ)) + b(σ, (v, ψ)). (2.3.19)

Notice that, from now on, for simplicity, the norm for the product space X×N, will

be denoted by ∥(·, ·)∥ = | · |4/3,div ;Ω+ ∥ · ∥N. From (2.3.4) and (2.3.5), it is clear that

A is bounded. Furthermore, based on (2.3.9), (2.3.10), and [18, Proposition 2.36] it

is not difficult to see that the following inf-sup condition holds:

sup
0 ̸=(τ ,(v,ψ))∈X0×N

A((ρ, (z, ζ)), (τ , (v, ψ)))

∥(τ , (v, ψ))∥
≥ γ∥(ρ, (z, ζ))∥ ∀ (ρ, (z, ζ)) ∈ X0 ×N,

(2.3.20)

with

γ :=
βmin{1, β}
4(β + 1)

. (2.3.21)

Next, we establish the well-definiteness of T.

Theorem 2.3.2 Assume that

4

νγ2

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
≤ 1. (2.3.22)

Then, given (w, ϕ) ∈ K, there exists a unique (u, φ) ∈ K such that T(w, ϕ) = (u, φ).

Proof. In fact, given (w, ϕ) ∈ K, we begin by defining the bilinear form

Aw,ϕ((σ, (u, φ)), (τ , (v, ψ))) := A((σ, (u, φ)), (τ , (v, ψ))) + c((w, ϕ); (u, φ), τ ),

(2.3.23)

where A and c are the forms defined in (2.3.19) and (2.2.17), respectively.

Thus, the problem (2.3.18) can be equivalently rewritten as: Find (σ, (u, φ)) ∈
X0 ×N, such that

Aw,ϕ((σ, (u, φ)), (τ , (v, ψ))) = F (τ ) +G(v, ψ) ∀ (τ , (v, ψ)) ∈ X0 ×N. (2.3.24)

Therefore, to prove the well-definiteness of T, in what follows we prove that the

above problem is well-posed by means of the Banach–Nečas–Babuška theorem [18,

Theorem 2.6].

First, we observe that given (ρ, (z, ζ)), (τ̂ , (v̂, ψ̂)) ∈ X0 × N with (v̂, ψ̂) ̸= 0,
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from (2.3.6), it follows that

sup
0̸=(τ ,(v,ψ))∈X0×N

Aw,ϕ((ρ, (z, ζ)), (τ , (v, ψ)))

∥(τ , (v, ψ))∥
≥ |A((ρ, (z, ζ)), (τ̂ , (v̂, ψ̂)))|

∥(τ̂ , (v̂, ψ̂))∥

− |c((w, ϕ); (z, ζ), τ̂ )|
∥(τ̂ , (v̂, ψ̂))∥

≥ |A((ρ, (z, ζ)), (τ̂ , (v̂, ψ̂)))|
∥(τ̂ , (v̂, ψ̂))∥

− 1

ν
∥(w, ϕ)∥N∥(ρ, (z, ζ))∥,

which, together with (2.3.20) and given that (τ̂ , (v̂, ψ̂)) is arbitrary, implies

sup
0 ̸=(τ ,(v,ψ))∈X0×N

Aw,ϕ((ρ, (z, ζ)), (τ , (v, ψ)))

∥(τ , (v, ψ))∥
≥
(
γ − 1

ν
∥(w, ϕ)∥N

)
∥(ρ, (z, ζ))∥.

(2.3.25)

Therefore, from the definition of the setK (cf. (2.3.16)), and the assumption (2.3.22),

we get
1

ν
∥(w, ϕ)∥N ≤ 2

νγ

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
≤ γ

2
, (2.3.26)

which, combined with (2.3.25), results in

sup
0 ̸=(τ ,(v,ψ))∈X0×N

Aw,ϕ((ρ, (z, ζ)), (τ , (v, ψ)))

∥(τ , (v, ψ))∥
≥ γ

2
∥(ρ, (z, ζ))∥ ∀ (ρ, (z, ζ)) ∈ X0×N.

(2.3.27)

In addition, we observe that given (ρ, (z, ζ)) ∈ X0 ×N,

sup
(τ ,(v,ψ))∈X0×N

Aw,ϕ((τ , (v, ψ)), (ρ, (z, ζ)))

≥ sup
0 ̸=(τ ,(v,ψ))∈X0×N

Aw,ϕ((τ , (v, ψ)), (ρ, (z, ζ)))

∥(τ , (v, ψ))∥

= sup
0 ̸=(τ ,(v,ψ))∈X0×N

A((τ , (v, ψ)), (ρ, (z, ζ))) + c((w, ϕ); (v, ψ),ρ)

∥(τ , (v, ψ))∥
,
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so that,

sup
(τ ,(v,ψ))∈X0×N

Aw,ϕ((τ , (v, ψ)), (ρ, (z, ζ)))

≥ |A((τ , (v, ψ)), (ρ, (z, ζ))) + c((w, ϕ); (v, ψ),ρ)|
∥(τ , (v, ψ))∥

≥ |A((τ , (v, ψ)), (ρ, (z, ζ)))|
∥(τ , (v, ψ))∥

− |c((w, ϕ); (v, ψ),ρ)|
∥(τ , (v, ψ))∥

,

for all (τ , (v, ψ)) ∈ (X0 ×N)\{0}, which together with (2.3.6), implies

sup
(τ ,(v,ψ))∈X0×N

Aw,ϕ((τ , (v, ψ)), (ρ, (z, ζ)))

≥ sup
0̸=(τ ,(v,ψ))∈X0×N

A((τ , (v, ψ)), (ρ, (z, ζ)))

∥(τ , (v, ψ))∥
− 1

ν
∥(w, ϕ)∥N∥(ρ, (z, ζ))∥.

(2.3.28)

Then, since A(·, ·) is symmetric, and based on (2.3.20) and (2.3.28), we obtain:

sup
(τ ,(v,ψ))∈X0×N

Aw,ϕ((τ , (v, ψ)), (ρ, (z, ζ))) ≥ γ∥(ρ, (z, ζ))∥− 1

ν
∥(w, ϕ)∥N∥(ρ, (z, ζ))∥,

which together with (2.3.26), results in

sup
(τ ,(v,ψ))∈X0×N

Aw,ϕ((τ , (v, ψ)), (ρ, (z, ζ))) ≥
γ

2
∥(ρ, (z, ζ))∥ ∀ (ρ, (z, ζ)) ∈ X0 ×N.

(2.3.29)

Thus, from (2.3.27) and (2.3.29), we get that Aw,ϕ(·, ·) satisfies the hypothesis

of the Banach–Nečas–Babuška theorem (see eg. [18, Theorem 2.6]), which enables

us to deduce the existence of a unique (σ, (u, φ)) ∈ X0 ×N solution to (2.3.18), or

equivalently, the existence of a unique (u, φ) ∈ N such that T(w, ϕ) = (u, φ).

Furthermore, from (2.3.27) with (ρ, (z, ζ)) = (σ, (u, φ)) and (2.3.24), we easily

obtain that

∥(u, φ)∥N ≤ ∥(σ, (u, φ))∥ ≤ 2

γ

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
.

Therefore, (u, φ) belongs to K, and the proof is concluded. □
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2.3.2 Well-posedness of the continuous problem

Having proved the well-posedness of the problem (2.3.18), which ensure that the

operator T is well defined, we now aim to establish the existence of a unique fixed

point of the operator T. For this purpose, in what follows we verify the hypothesis

of the Banach fixed-point theorem.

Theorem 2.3.3 Let f ∈ L4/3(Ω) and uD ∈ H1/2(Γ) such that

4

νγ2

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
< 1. (2.3.30)

Then, there exists a unique (σ, (u, φ)) ∈ X0 ×N solution to (2.2.19) such that

|σ|4/3,div ;Ω + ∥(u, φ)∥N ≤ 2

γ

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
.

Proof. In what follows we prove that T is a contraction mapping. We begin by

noting that thanks to Theorem 2.3.2, the assumption (2.3.30) guarantees that T is

well-defined. Now, let (w1, ϕ1), (w2, ϕ2), (u1, φ1), (u2, φ2) ∈ K, such that (u1, φ1) =

T(w1, ϕ1) and (u2, φ2) = T(w2, ϕ2). Then, from the definition of T (cf. (2.3.17)) and

(2.3.24), it follows that there exist unique σ1,σ2 ∈ X0, such that for all (τ , (v, ψ)) ∈
X0 ×N, there hold

Aw1,ϕ1((σ1, (u1, φ1)), (τ , (v, ψ))) = F (τ ) +G(v, ψ),

and

Aw2,ϕ2((σ2, (u2, φ2)), (τ , (v, ψ))) = F (τ ) +G(v, ψ).

Then, subtracting both equations, adding and subtracting suitable terms, and re-

calling the definition of Aw,ϕ (cf. (2.3.23)), we easily arrive at

Aw1,ϕ1((σ1−σ2, (u1−u2, φ1−φ2)), (τ , (v, ψ))) = − c((w1−w2, ϕ1−ϕ2); (u2, φ2), τ ),

for all (τ , (v, ψ)) ∈ X0 ×N.

So, recalling that (w1, ϕ1) ∈ K, from the above identity, (2.3.27) and (2.3.6), we
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get
γ

2
∥(u1 − u2, φ1 − φ2)∥N

≤ sup
0 ̸=(τ ,(v,ψ))∈X0×N

Aw1,ϕ1((σ1 − σ2, (u1 − u2, φ1 − φ2)), (τ , (v, ψ)))

∥(τ , (v, ψ))∥

= sup
0 ̸=(τ ,(v,ψ))∈X0×N

− c((w1 −w2, ϕ1 − ϕ2); (u2, φ2), τ )

∥(τ , (v, ψ))∥

≤ 1

ν
∥(w1 −w2, ϕ1 − ϕ2)∥N∥(u2, φ2)∥N,

which together with (u2, φ2) ∈ K, implies

∥(u1 − u2, φ1 − φ2)∥N ≤ 4

νγ2

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
∥(w1 −w2, ϕ1 − ϕ2)∥N.

Hence, and assumption (2.3.30) we conclude that T is a contraction.

Now, to derive the continuous dependence of the data, let (u, φ) ∈ K be the

unique fixed point of T and let σ ∈ X0 be such that (σ, (u, φ)) is the unique

solution of (2.2.19). According to (2.3.27), with (ρ, (z, ζ)) = (σ, (u, φ)), (2.3.7) and

(2.3.8) we obtain

∥(σ, (u, φ))∥ ≤ 2

γ
sup

0 ̸=(τ ,(v,ψ))∈X0×N

Au,φ((σ, (u, φ)), (τ , (v, ψ)))

∥(τ , (v, ψ))∥

=
2

γ
sup

0 ̸=(τ ,(v,ψ))∈X0×N

F (τ ) +G(v, ψ)

∥(τ , (v, ψ))∥
,

consequently,

|σ|4/3,div ;Ω + ∥(u, φ)∥N ≤ 2

γ

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
.

□

We end this section by providing the converse of the derivation of (2.2.19).

Theorem 2.3.4 Let (σ, (u, φ)) ∈ X0×M be the unique solution of (2.2.19). Then,

−div σ =
1

ν
f in Ω, φ = 0 in Ω, u = uD on Γ and ∇u = σd +

1

ν
(u ⊗ u)d in Ω,

which implies that u ∈ H1(Ω).

Proof. The identity −div σ =
1

ν
f in Ω follows from the second equation of (2.2.19)

and the Helmholtz decomposition (2.2.10) whereas identity φ = 0 in Ω follows from
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Lemma 2.2.2. The rest of the identities follow from the first equation of (2.2.19),

considering suitable test functions and integrating by parts backwardly. We omit

further details. □

2.4 The Galerkin scheme

In this section, we introduce and analyze the corresponding Galerkin scheme for

the mixed formulation (2.2.19). The solvability of this scheme is addressed follo-

wing analogous tools to those employed throughout Section 2.3. Finally, we derive

the corresponding a priori error estimate and rates of convergence of the Galerkin

scheme.

2.4.1 Discrete scheme

Let Th be a regular family of regular triangulations of the polygonal region Ω

by triangles T in R2 of diameter hT , such that Ω = ∪{T : T ∈ Th} and define

h := max{hT : T ∈ Th}. Given an integer l ≥ 0 and a subset S of R2, we denote

by Pl(S) the space of polynomials of total degree at most l defined on S. Hence,

for each T ∈ Th, we define the local Raviart–Thomas space of lowest order (see for

instance [7]), as:

RT0(T ) := [P0(T )]
2 ⊕ P0(T )x,

where x := (x1, x2)
t is a generic vector of R2.

In addition, we let Eh be the set of edges of Th, whose corresponding diameters

are denoted he, and define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

We also let [[·]] be the usual jump operator across internal faces defined for piecewise

continuous functions v, by

[[v]] = (v
∣∣
T+
)
∣∣
e
− (v

∣∣
T−
)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge. Then, we



2.4 Discrete scheme 53

introduce the well-known Crouzeix–Raviart space (see, for instance, [15]):

Ψh :=

{
vh : Ω → R : vh|T ∈ P1(T ), ∀T ∈ Th, ([[vh]], 1)e = 0, ∀ e ∈ Eh(Ω)

and (vh, 1)e = 0, ∀ e ∈ Eh(Γ)
}
.

In this way, defining the discrete spaces

Xh := {τ h ∈ X : ctτ h|T ∈ RT0(T ), ∀ c ∈ R2 ∀T ∈ Th} ,
Xh,0 := Xh ∩H0(div 4/3; Ω),

Vh := {zh ∈ H4(div; Ω) : zh|T ∈ RT0(T ), ∀T ∈ Th} ,
Vh,0 := Vh ∩H4(div0; Ω), Nh := Vh,0 ×Ψh,

the Galerkin scheme associated with problem (2.2.19) reads: Find (σh, (uh, φh)) ∈
Xh,0 ×Nh, such that:

a(σh, τ h) + bh(τ h, (uh, φh)) + ch((uh, φh); (uh, φh), τ h) = F (τ h)

bh(σh, (vh, ψh)) = Gh(vh, ψh)

(2.4.1)

for all (τ h, (vh, ψh)) ∈ Xh,0×Nh, where the form a and the functional F are defined

in (2.2.16) and (2.2.18), respectively, and the forms bh : X0 × N(h) → R, ch :

N(h)×N(h)× X0 → R and the functional Gh : N(h) → R are defined as follows

bh(τ , (v, ψh)) := (div τ ,v +∇hψh)Ω,

ch((w, φh); (v, χh), τ ) :=
1

ν
((w +∇hφh)⊗ (v +∇hχh), τ

d)Ω,

Gh(v, ψh) := −1

ν
(f ,v +∇hψh)Ω,

where ∇h is the discrete gradient for discontinuous functions, that is, ∇hψh|T =

∇(ψh|T ), ∀T ∈ Th and N(h) := V0 × (Ψ0 +Ψh). Since Ψh is not included in Ψ0, in

the sequel, we equipped to the space Ψh with the following seminorm

|vh|h =
( ∑
T∈Th

|vh|41,4;T
)1/4

,
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for all vh ∈ Ψh which can be proved to be a norm on Ψh (see, for instance, [15]) . In

accordance with the above, for all (vh, ψh) ∈ Nh, we define

∥(vh, ψh)∥Nh
:= ∥vh∥4,div;Ω + |ψh|h and as in the continuous case, we will denote by

∥(·, ·)∥ = | · |4/3,div ;Ω + ∥ · ∥Nh
the norm for the product space X×Nh. In addition,

we can easily deduce by using Hölder inequality at local level that the forms bh,

ch and Gh are bounded with the same bounding constants that appear in (2.3.5),

(2.3.6) and (2.3.7), respectively. Notice that the gradient operator and the discrete

gradient operator coincide in Ψ0 which implies that bh, ch and Gh coincide with b,

c and G in N, respectively.

Remark 2.4.1 It is worth noting that, although the analysis in this section was

conducted using RT0 elements to approximate the pseudostress, other viable op-

tions are also available. For example, another possibility would be to approximate

the pseudostress using BDM1 elements. For more details about properties of BDM1

elements see, for instance, [6].

2.4.2 Analysis of the discrete problem

Now we address the unique solvability of (2.4.1) by adapting the fixed-point

strategy developed in Section 2.3. To that end, and analogously to the continuous

case, we introduce a fixed-point operator associated with a linearized version of

problem (2.4.1) and equivalently prove that this operator possess a unique fixed-

point by means of the Banach fixed-point theorem. We begin introducing some

preliminaries results.

Preliminary results

We begin by recalling from [3, Theorem 4.1], the following orthogonal decompo-

sition:

[P0(Th)]2 = Vh,0 ⊕∇hΨh, (2.4.2)

where P0(Th) are the piecewise constant functions in Ω and

∇hΨh := {sh|T ∈ [P0(T )]
2 : ∃ vh ∈ Ψh such that sh|T = ∇(vh|T ), ∀T ∈ Th}.
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Now, to prove the discrete version of (2.3.10) we first define the space

Zp := {τ ∈ H(divp ; Ω) : τ |T ∈ W1,p(T ), ∀T ∈ Th},

and let

ΠRT
h : Zp → Xh := {τ ∈ H(div; Ω) : τ |T ∈ RT0(T ), ∀T ∈ Th},

be the Raviart–Thomas interpolator operator, which satisfies the identity holds

div
(
ΠRT
h (τ)

)
= Ph(div τ), ∀ τ ∈ Zp, (2.4.3)

where Ph is the L2-projection on P0(Th) which satisfies

(v − Ph(v), zh)Ω = 0 ∀ zh ∈ P0(Th),

and the following error estimate (see [18, Proposition 1.135, section 1.6.3]): For each

0 ≤ m ≤ 1 and for each w ∈ Wm,r(Ω), with 1 ≤ r ≤ ∞, it holds that

∥w − Ph(w)∥0,r;Ω ≤ Chm|w|m,r;Ω. (2.4.4)

Moreover, the following lemma establishes the local approximation properties of

ΠRT
h .

Lemma 2.4.2 Let r > 1. Then, there exists C1 > 0, independent of h, such that

for each τ ∈ W1,r(T ), and for each 0 ≤ m ≤ 1, there holds

|τ − ΠRT
h (τ)|m,r;T ≤ C1

h2T
ρm+1
T

|τ |1,r;T , (2.4.5)

where hT is the diameter of T , and ρT is the diameter of the largest circle contained

in T . Additionally, there exists C2 > 0, independent of h, such that for each τ ∈
W1,r(T ), with div τ ∈ W1,r(T ) and for each 0 ≤ m ≤ 1,

|div τ − div(ΠRT
h (τ))|m,r;T ≤ C2

hT
ρmT

|div τ |1,r;T . (2.4.6)

Proof. As it was explained in [12, Lemma 4.1], the proof follows by employing the
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Lr-version of the Deny–Lions Lemma provided in Reference [18, Lemma B.67], the

local estimates given in [18, Lemma 1.101], and proceeding analogously as in [22,

Section 3.4.4] it can be proved that for any r > 1 the estimates (2.4.5) and (2.4.6)

hold. We omit further details. □

Owing to the regularity of the mesh and of the estimates (2.4.5) and (2.4.6), it

is not difficult see that the following global estimate holds

∥τ − ΠRT
h (τ)∥0,Ω + ∥div τ − div(ΠRT

h (τ))∥0,p;Ω ≤ ch{|τ |1,Ω + |div τ |1,p;Ω}, (2.4.7)

for all τ ∈ H1(Ω) with div τ ∈ W1,p(Ω).

In what follows we will employ a tensor version of ΠRT
h , denoted by ΠRT

h : Zp →
Xh, which is defined row-wise by ΠRT

h , and the vector version of Ph, denoted by Ph,

defined component-wise by Ph.

Remark 2.4.3 Observe that from the regularity of the mesh and from (2.4.5) with

m = 0 and m = 1, one can easily obtain, respectively, that

∥τ − ΠRT
h (τ)∥0,r;T ≤ C1

h2T
ρT

|τ |1,r;T ≤ C̃1hT |τ |1,r;T

and

|τ − ΠRT
h (τ)|1,r;T ≤ C2

h2T
ρ2T

|τ |1,r;T ≤ C̃2|τ |1,r;T ,

which combined with [18, Lemma 1.101] and (2.3.1), yields

∥τ − ΠRT
h (τ)∥0,T ≤ Ch

1− 2(2−r)
2r

T |τ |1,r;T ∀τ ∈ W1,r(T ),

with r > 1, in particular for r = 4/3, there holds

∥τ − ΠRT
h (τ)∥0,T ≤ Ch

1/2
T |τ |1,4/3;T ∀τ ∈ W1,4/3(T ). (2.4.8)

The latter will be employed next in the proof of Lemma 2.4.4.
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Fixed-point strategy and well-posedness analysis

Analogously to the continuous case, let us introduce the finite-dimensional boun-

ded set

Kh :=

{
(vh, ψh) ∈ Nh : ∥(vh, ψh)∥Nh

≤ 2

γ̃

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)}
,

with γ̃ > 0 being the constant defined in (2.4.21), and define the discrete version of

T (cf. (2.3.17)):

Th : Kh → Kh, (wh, ϕh) → Th(wh, ϕh) = (uh, φh),

where given (wh, ϕh) ∈ Kh, (uh, φh) is the second component of (σh, (uh, φh)) ∈
Xh,0 ×Nh, solution to

a(σh, τ h) + bh(τ h, (uh, φh)) + ch((wh, ϕh); (uh, φh), τ h) = F (τ h)

bh(σh, (vh, ψh)) = Gh(vh, ψh)

(2.4.9)

for all (τ h, (vh, ψh)) ∈ Xh,0 × Nh. Similar to the continuous case, the following

equivalence hold:

Th(uh, φh) = (uh, φh) ⇔ (σh, (uh, φh)) ∈ Xh,0 ×Nh satisfies (2.4.1), (2.4.10)

from which we deduce that to prove the well-posedness of problem (2.4.1), it is suffi-

cient to prove that Th has a unique fixed-point in Kh. To that end, and analogously

to the analysis of the continuous problem, we first focus on providing the necessary

tools to prove that the operator Th is well defined. We begin by observing that

according to the decomposition (2.4.2) and the fact that div (Xh) ⊆ [P0(Th)]2, the
kernel of bh,

Vh := {τ h ∈ Xh,0 : bh(τ h, (vh, ψh)) = 0, ∀ (vh, ψh) ∈ Nh},

can be characterized as follows

Vh := {τ h ∈ Xh,0 : div τ h = 0 in Ω}.
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Hence, it follows easily from the definition of the bilinear form a that

a(τ h, τ h) = |τ h|24/3,div ;Ω ∀ τ h ∈ Vh, (2.4.11)

as in (2.3.9).

Now we establish the discrete inf-sup condition of bh.

Lemma 2.4.4 There exists β̃ > 0, independent of h, such that

sup
0 ̸=τh∈Xh,0

bh(τ h, (vh, ψh))

|τ h|4/3,div ;Ω

≥ β̃∥(vh, ψh)∥Nh
∀ (vh, ψh) ∈ Nh. (2.4.12)

Proof. We let B ⊆ R2 be a bounded and open convex domain such that Ω ⊂ B, and

given (vh, ψh) ∈ Nh, we set

g(vh, ψh) :=

{
|vh +∇hψh|2(vh +∇hψh), in Ω,

0, in B\Ω.

Since g(vh, ψh) ∈ L4/3(Ω), a well-known result on regularity of elliptic problems (see,

for instance, [21]) implies that there exists a unique weak solution z ∈ W2,4/3(B) ∩
W

1,4/3
0 (B) of the boundary value problem

−∆z = g(vh, ψh) in B, z = 0 on ∂B,

which satisfies

∥z∥2,4/3;Ω ≤ C∥g(vh, ψh)∥0,4/3;B = C∥vh +∇hψh∥30,4;Ω. (2.4.13)

Therefore, we let τ̂ = −∇z|Ω ∈ W1,4/3(Ω), and note from (2.4.13) that

∥τ̂∥1,4/3;Ω ≤ c0∥vh +∇hψh∥30,4;Ω, (2.4.14)

which together with the continuous embedding from W1,4/3(Ω) into L2(Ω), implies

∥τ̂∥0,Ω ≤ c1∥vh +∇hψh∥30,4;Ω. (2.4.15)

Now, we define τ̂ h = ΠRT
h (τ̂ ) − 1

2|Ω|
(tr (ΠRT

h (τ̂ )), 1)ΩI ∈ Xh,0 and observe from
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(2.4.3) that

div τ̂ h = Ph(div τ̂ ) = Ph(|vh +∇hψh|2(vh +∇hψh)) = |vh +∇hψh|2(vh +∇hψh).

(2.4.16)

In turn, proceeding as in [12, Lemma 4.3], that is, using the triangle inequality and

estimates (2.4.8) and (2.4.15), we obtain

∥τ̂ h∥0,Ω ≤
∥∥∥∥τ̂ − 1

2|Ω|
(tr (τ̂ ), 1)ΩI− τ̂ h

∥∥∥∥
0,Ω

+

∥∥∥∥τ̂ − 1

2|Ω|
(tr (τ̂ ), 1)ΩI

∥∥∥∥
0,Ω

=

∥∥∥∥τ̂ −ΠRT
h (τ̂ )− 1

2|Ω|
(tr (τ̂ −ΠRT

h (τ̂ )), 1)ΩI
∥∥∥∥
0,Ω

+

∥∥∥∥τ̂ − 1

2|Ω|
(tr (τ̂ ), 1)ΩI

∥∥∥∥
0,Ω

≤ ∥τ̂ −ΠRT
h (τ̂ )∥0,Ω + ∥τ̂∥0,Ω

≤ c2

{ ∑
T∈Th

hT |τ̂ |21,4/3;T
}1/2

+ c1∥vh +∇hψh∥30,4;Ω

≤ c2h
1/2|τ̂ |1,4/3;Ω + c1∥vh +∇hψh∥30,4;Ω,

which together with (2.4.14), implies

∥τ̂ h∥0,Ω ≤ c3∥vh +∇hψh∥30,4;Ω. (2.4.17)

Then, using (2.4.16) and (2.4.17), we obtain easily

|τ̂ h|4/3,div ;Ω ≤ {∥τ̂ h∥20,Ω + ∥div (τ̂ h)∥20,4/3;Ω}1/2 ≤ ĉ∥vh +∇hψh∥30,4;Ω, (2.4.18)

with ĉ > 0 independent of h.

On the other hand, thanks to (2.4.2), and [23, Definition 3.13, Lemma 3.20],

there exist a constant Ĉ > 0, such that

∥(vh, ψh)∥Nh
= ∥vh∥4,div;Ω + |ψh|h ≤ Ĉ∥vh +∇hψh∥0,4;Ω,

for all (vh, ψh) ∈ Vh,0 × Ψh. Therefore, from estimates (2.4.16), (2.4.18) and the

previous inequality, it follows that

sup
0̸=τh∈Xh,0

bh(τ h, (vh, ψh))

|τ h|4/3,div ;Ω
≥ bh(τ̂ h, (vh, ψh))

|τ̂ h|4/3,div ;Ω
≥ 1

ĉ

∥vh +∇hψh∥40,4;Ω
∥vh +∇hψh∥30,4;Ω

=
1

ĉ
∥vh +∇hψh∥0,4;Ω ≥ β̃∥(vh, ψh)∥Nh

,
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with β̃ = ĉ−1Ĉ−1 > 0. □

To conclude the derivation of the necessary tools to prove the well-definiteness of

the operator Th, analogously to the continuous case, from (2.4.11), (2.4.12) and [18,

Proposition 2.36] it follows that the bilinear formAh : (X0×N(h))×(X0×N(h)) → R
defined as

Ah((σ, (u, φ)), (τ , (v, ψ))) := a(σ, τ ) + bh(τ , (u, φ)) + bh(σ, (v, ψ)), (2.4.19)

satisfies the discrete inf-sup condition

sup
0̸=(τh,(vh,ψh))∈Xh,0×Nh

Ah((σh, (uh, φh)), (τ h, (vh, ψh)))

∥(τ h, (vh, ψh))∥
≥ γ̃∥(σh, (uh, φh))∥,

(2.4.20)

for all (σh, (uh, φh)) ∈ Xh,0 ×Nh, with

γ̃ :=
β̃min{1, β̃}
4(β̃ + 1)

. (2.4.21)

We are now in position to establishing the well-definiteness of Th.

Theorem 2.4.5 Assume that

4

νγ̃2

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
≤ 1. (2.4.22)

Then, given (wh, ϕh) ∈ Kh, there exists a unique (uh, φh) ∈ Kh such that

Th(wh, ϕh) = (uh, φh).

Proof. In fact, given (wh, ϕh) ∈ Kh, we proceed analogously to the proof of Theorem

2.3.2 and use (2.3.6), (2.4.20) and the assumption (2.4.22) to deduce that the bilinear

form

Ah
wh,ϕh

((σh, (uh, φh)), (τ h, (vh, ψh))) := Ah((σh, (uh, φh)), (τ h, (vh, ψh)))

+ ch((wh, ϕh); (uh, φh), τ h),
(2.4.23)
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satisfies the discrete inf-sup condition

sup
0 ̸=(τh,(vh,ψh))∈Xh,0×Nh

Ah
wh,ϕh

((σh, (uh, φh)), (τ h, (vh, ψh)))

∥(σh, (uh, φh))∥
≥ γ̃

2
∥(σh, (uh, φh))∥.

(2.4.24)

Then, because subjectivity and injectivity are equivalent, in finite dimensional linear

problems, from (2.4.24), the fact that ch is bounded with the same bounding constant

that apper in (2.3.6) and the Banach–Nečas–Babuška theorem we obtain that there

exists a unique (σh, (uh, φh)) ∈ Xh,0 ×Nh which satisfies

Ah
wh,ϕh

((σh, (uh, φh)), (τ h, (vh, ψh))) = F (τ h) +Gh(vh, ψh),

for all (τ h, (vh, ψh)) ∈ Xh,0 × Nh, or equivalently (2.4.9), with (uh, φh) ∈ Kh and

the proof is concluded.

□

The following theorem establishes the well-posedness of the Galerkin scheme

(2.4.1).

Theorem 2.4.6 Let f ∈ L4/3(Ω) and uD ∈ H1/2(Γ) such that

4

νγ̃2

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
< 1. (2.4.25)

Then, there exists a unique (σh, (uh, φh)) ∈ Xh,0 ×Nh solution to (2.4.1). Further-

more, there holds

|σh|4/3,div ;Ω + ∥(uh, φh)∥Nh
≤ 2

γ̃

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
.

Proof. Using (2.4.10), (2.4.20) and (2.4.25), the proof still repeats exactly the same

steps developed in the proof of Theorem 2.3.3. □

Remark 2.4.7 Observe that from the second equation of (2.4.1), we have that

(
div σh + ν−1f ,vh +∇hψh

)
Ω
= 0 ∀ (vh, ψh) ∈ Nh,

which thanks to (2.4.2) leads to div σh = −ν−1Ph(f), and accordingly, our method

preserves exactly the discrete equilibrium equation, so the method is momentum con-
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servative. Moreover, the discrete space Vh,0 becomes

Vh,0 = {vh ∈ Vh : div vh = 0 in Ω},

thus the numerical scheme (2.4.1) produces exactly divergence-free aproximations for

the velocity u.

2.4.3 A priori error estimate and theoretical rate of conver-

gence

In this section, we study the convergence of the Galerkin scheme (2.4.1). More

precisely, we first deduce the corresponding a priori error estimate and later on,

under an extra regularity assumption of the exact solution, and employing the

approximation properties of the discrete spaces introduced in (2.4.1), we derive the

theoretical rate of convergence.

The following result establishes the aforementioned a priori error estimate.

Theorem 2.4.8 Assume that

4

νγγ̃

(
CF∥uD∥1/2,Γ +

1

ν
∥f∥0,4/3;Ω

)
≤ 1

2
, (2.4.26)

with γ and γ̃ being the constants defined in (2.3.21) and (2.4.21), respectively. Let

(σ, (u, 0)) ∈ X0 × N and (σh, (uh, φh)) ∈ Xh,0 × Nh be the unique solutions of

problems (2.2.19) and (2.4.1), respectively. Then, there exists a positive constant C,

independent of h and ν, such that

|σ−σh|4/3,div ;Ω+∥(u−uh, φh)∥Nh
≤ C

{
inf

τh∈Xh,0

|σ−τ h|4/3,div ;Ω+ inf
vh∈Vh,0

∥u−vh∥0,Ω
}

(2.4.27)

Proof. In order to simplify the subsequent analysis, we define

eσ := σ − σh, eu := u− uh, eφ := φ− φh

and for any (ρh, (zh, ζh)) ∈ Xh,0 ×Nh, we write

eσ = ξσ + χσ, eu = ξu + χu, eφ = ξφ + χφ, (2.4.28)
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where

ξσ := σ − ρh, χσ := ρh − σh, ξu := u− zh, χu := zh − uh,

ξφ := φ− ζh, χφ := ζh − φh.

According to the definition of the bilinear form Ah (see (2.4.19)), from (2.2.19),

the fact that −divσ =
1

ν
f in Ω and φ = 0 in Ω (see Theorem 2.3.4), and (2.4.1)

we have that the following identities are satisfied

Ah((σ, (u, φ)), (τ , (v, ψ))) + ch((u, φ); (u, φ), τ ) = F (τ ) +Gh(v, ψ)

and

Ah((σh, (uh, φh)), (τ h, (vh, ψh))) + ch((uh, φh); (uh, φh), τ h) = F (τ h) +Gh(vh, ψh),

for all (τ , (v, ψ)) ∈ X0 ×N(h) and (τ h, (vh, ψh)) ∈ Xh,0 ×Nh; from which follows

the Galerkin orthogonality property

Ah((eσ, (eu, eφ)), (τ h, (vh, ψh))) + ch((u, φ); (u, φ), τ h)− ch((uh, φh); (uh, φh), τ h) = 0,

(2.4.29)

for all (τ h, (vh, ψh)) ∈ Xh,0 ×Nh.

Now, using the decompositions (2.4.28), the definition of Ah
wh,ϕh

(cf. (2.4.23)),

and the fact that

ch((u, φ); (u, φ), τ h) = ch((u− uh, φ− φh); (u, φ), τ h) + ch((uh, φh); (u, φ), τ h),

from (2.4.29) we obtain that for all (τ h, (vh, ψh)) ∈ Xh,0 ×Nh, it follows that

Ah
uh,φh

((χσ, (χu, χφ)), (τ h, (vh, ψh))) = −Ah((ξσ, (ξu, ξφ)), (τ h, (vh, ψh)))

− ch((ξu, ξφ); (u, φ), τ h)− ch((χu, χφ); (u, φ), τ h)− ch((uh, φh); (ξu, ξφ), τ h),
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which, according to the definition of Ah (cf. (2.4.19)), implies

Ah
uh,φh

((χσ, (χu, χφ)), (τ h, (vh, ψh)))

= −a(ξσ, τ h)− bh(τ h, (ξu, ξφ))− bh(ξσ, (vh, ψh))− ch((ξu, ξφ); (u, φ), τ h)

− ch((χu, χφ); (u, φ), τ h)− ch((uh, φh); (ξu, ξφ), τ h),

(2.4.30)

for all (τ h, (vh, ψh)) ∈ Xh,0 × Nh. Then, because (uh, φh) ∈ Kh, we apply the

discrete inf-sup condition (2.4.20) on the left-hand side of (2.4.30) and the continuity

properties of a, bh and ch, on the right-hand side of (2.4.30), to get

∥(χσ, (χu, χφ))∥ ≤2

γ̃

(
2|ξσ|4/3,div ;Ω +

(
1 +

1

ν
∥(uh, φh)∥Nh

+
1

ν
∥(u, φ)∥N

)
∥(ξu, ξφ)∥Nh

+
1

ν
∥(χu, χφ)∥Nh

∥(u, φ)∥N
)
,

i.e.,

|χσ|4/3,div ;Ω +

(
1− 2

νγ̃
∥(u, φ)∥N

)
∥(χu, χφ)∥Nh

≤ 2

γ̃

(
2|ξσ|4/3,div ;Ω +

(
1 +

1

ν
∥(uh, φh)∥Nh

+
1

ν
∥(u, φ)∥N

)
∥(ξu, ξφ)∥Nh

)
.

(2.4.31)

Therefore, given that (u, φ) ∈ K and (uh, φh) ∈ Kh, from the assumption (2.4.26)

and (2.4.31), we obtain that,
1

ν
∥(u, φ)∥N ≤ γ̃

4
and

1

ν
∥(uh, φh)∥Nh

≤ γ

4
, thus

|χσ|4/3,div ;Ω + ∥(χu, χφ)∥Nh
≤ C(|ξσ|4/3,div ;Ω + ∥(ξu, ξφ)∥Nh

), (2.4.32)

where C > 0 is independent of h and ν. Thus, from (2.4.28), (2.4.32) and the triangle

inequality, we get

∥(eσ, (eu, φh))∥ ≤ ∥(χσ, (χu, χφ))∥+ ∥(ξσ, (ξu, ξφ))∥ ≤ (1 + C)∥(ξσ, (ξu, ξφ))∥,

which combined with the fact that (ρh, (zh, ζh)) ∈ Xh,0 × Nh is arbitrary and the

fact that φ = 0 in Ω, concludes the proof.

□

From the estimates (2.4.4), (2.4.7) and the error estimate (2.4.27) we readily

obtain the corresponding theorical rate of convergence of our mixed finite element
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method. This result is established next.

Theorem 2.4.9 Let (σ, (u, 0)) ∈ X0 × N and (σh, (uh, φh)) ∈ Xh,0 × Nh be the

unique solutions of (2.2.19) and (2.4.1), respectively, with f and uD satisfying

(2.4.26); and assume that σ ∈ H1(Ω),divσ ∈ W1,4/3(Ω) and u ∈ W1,4(Ω). Then,

there exist C > 0, independent of h and ν, such that

|σ − σh|4/3,div ;Ω + ∥(u− uh, φh)∥Nh
≤ Ch{|σ|1,Ω + |divσ|1,4/3;Ω + |u|1,4;Ω}.

2.4.4 Computing other variables of interest

In this section, we introduce suitable approximations for other variables of in-

terest, such as the pressure p, the velocity gradient G = ∇u, the vorticity ω =
1

2
(∇u − ∇ut), and the stress tensor σ̃ := ν(∇u +∇ut) − pI, are all them written

in terms of the solution of the discrete problem (2.4.1). In fact, using the Remark

2.2.3 and simple computations, we deduce that at the continuous level, there hold

p = −1

2

(
ν tr (σ) + tr (u⊗ u)− 1

|Ω|
(tr (u⊗ u), 1)Ω

)
,

G = σd +
1

ν
(u⊗ u)d, ω =

1

2
(σ − σt),

and σ̃ = ν(σd + σt)− 1

2|Ω|
(tr (u⊗ u), 1)ΩI+ u⊗ u+ (u⊗ u)d,

provided the discrete solution (σh, (uh, φh)) of problem (2.4.1), we propose the fol-

lowing approximations for the mentioned variables:

ph = −1

2

(
ν tr (σh) + tr (uh ⊗ uh)−

1

|Ω|
(tr (uh ⊗ uh), 1)Ω

)
,

Gh = σd
h +

1

ν
(uh ⊗ uh)

d, ωh =
1

2
(σh − σt

h), and

σ̃h = ν(σd
h + σt

h)−
1

2|Ω|
(tr (uh ⊗ uh), 1)ΩI+ uh ⊗ uh + (uh ⊗ uh)

d.

(2.4.33)

The following result, whose proof follows directly from Theorem 2.4.9 and suit-

able algebraic manipulations, establishes the corresponding approximation result for

this post-processing procedure.
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Corollary 2.4.10 Let (σ, (u, 0)) ∈ X0 × N and (σh, (uh, φh)) ∈ Xh,0 × Nh be

the unique solutions of (2.2.19) and (2.4.1), respectively, with f and uD satisfying

(2.4.26); and assume that σ ∈ H1(Ω), divσ ∈ W1,4/3(Ω) and u ∈ W1,4(Ω). Finally,

assume that the hypotheses of the Theorem 2.4.9 be hold. Then, there exists C > 0,

independient of h and ν, such that

∥p− ph∥0,Ω + ∥σ̃ − σ̃h∥0,Ω + ∥G−Gh∥0,Ω + ∥ω − ωh∥0,Ω

≤ Ch

{
|σ|1,Ω + |divσ|1,4/3;Ω + |u|1,4;Ω

}
.

2.5 Numerical Results

In this section we present three numerical examples illustrating the performance

of our finite element scheme and confirm the theorical results. We begin by men-

tioning that the numerical results that follow are realised by imposing the condition

of (tr (σh), 1)Ω = 0 through a penalty strategy using a scalar Lagrange multiplier

(adding only one row and one column to the system). Also, the divergence-free con-

straint for the velocity is imposed by means of an appropriate Lagrange multiplier

rh ∈ P0(Th). More precisely, we replace the numerical scheme (2.4.1) by the system:

Find (σh,uh, φh, rh, λh) ∈ Xh ×Vh ×Ψh × P0(Th)× R, such that:

a(σh, τh) + bh(τh, (uh, φh)) + ch((uh, φh); (uh, φh), τh) + λh(tr (τh), 1)Ω = F (τh),

bh(σh, (vh, ψh)) + (rh,divvh)Ω = G(vh, ψh),

(sh,divuh)Ω = 0,

ηh( tr (σh), 1)Ω = 0,

for all (τ h,vh, ψh, sh, ηh) ∈ Xh×Vh×Ψh×P0(Th)×R. Our implementation is based on

Freefem++ code (see [32]), in conjunction with the direct linear solver UMFPACK

(see [16]). We apply a Newton’s method with a fixed tolerance tol = 1E − 06 and

the iterations are terminated once the relative error of the entire coefficient vectors

between two consecutive iterates is sufficiently small, i.e.,

|coeffm+1 − coeffm|
|coeffm+1|

≤ tol,

where | · | is the standard euclidean norm RN , with N stands for the total number

of degree of freedom defining Xh ×Vh ×Ψh × P0(Th)×R. For each example shown
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below, we simply take (σh, (uh, φh)) = (0, (0, 0)) as initial guess. We denote the

individual errors by

e(σ) := |σ − σh|4/3,div ;Ω , e(u) := ∥u− uh∥0,4;Ω , e(φ) := |φ− φh|h ,

e(p) := ∥p− ph∥0,Ω , e(ω) := ∥ω − ωh∥0,Ω , e(∇u) := ∥∇u−Gh∥0,Ω ,

e(σ̃h) := ∥σ̃ − σ̃h∥0,Ω ,

where ph, ωh, Gh, and σ̃h are approximated, respectively, through the post-pro-

cessing formulas (2.4.33).

Moreover, we let r(%) be the experimental rate of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)

where e(%) is any of the errors defined above and h and h′ are two consecutive

meshsizes with errors e and e′.

The first example focuses on the performance of the iterative method as a func-

tion of the viscosity ν, considering the analytical solution (u, p) obtained by Ko-

vasznay in [36]. For the domain Ω := (−1/2, 3/2) × (0, 2) and for a given ν, this

solution is given by

u(x1, x2) =

 1− eλx1 cos(2πx2)

λ

2π
eλx1 sin(2πx2)

 , p(x1, x2) = −1

2
e2λx1 + p,

where

λ :=
−8π2

ν−1 +
√
ν−2 + 16π2

,

and the constant p is such that (p, 1)Ω = 0. Note that in this case div σ = f = 0 in

Ω.

In Table 2.1, we show the behavior of Newton’s method as a function of the

viscosity number, considering different mesh sizes and the finite element spaces in-

troduced in Section 2.4. Here we observe that the lower the parameter ν the higher

the number of iterations. Blanks spaces means that the iterative method takes more

than 100 iterations. Next, in Table 2.2, we summarize the convergence history for
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a sequence of quasi-uniform triangulations, considering the viscosity ν = 1. We see

there that the rate of convergence provided by Theorem 2.4.9 and Corollary 2.4.10

is attained by the unknowns and all the post-processed variables. In addition, the

l∞–norm of divuh and of div σh in each mesh are close to 0 which shows that this

method conserves mass and momentum.

Number of iterations
ν h = 0.7454 h = 0.3802 h = 0.1989 h = 0.0968 h = 0.0489
1 9 9 7 5 4
0.1 – – 14 6 5

ν h = 0.7454 h = 0.3802 h = 0.1989 h = 0.0968 h = 0.0489
1 9 7 6 5 4
0.1 17 10 7 6 5
0.01 – – – 7 6

Table 2.1: Example 1: Convergence behavior of the Newton’s method with re-
spect to the parameter ν and for the mixed RT0 −RT0 − Ψh (top) and BDM1 −
BDM1−Ψh (bottom) approximations of the Navier–Stokes problem.

N h e(σ) r(σ) e(u) r(u) e(p) r(p) ∥divuh∥l∞
285 0.7454 9.53E+01 – 8.80E+00 – 5.45E+01 – 1.78E-15
1129 0.3802 7.65E+01 0.3261 5.48E+00 0.7040 2.99E+01 0.8935 1.42E-14
4385 0.1989 4.58E+01 0.7927 3.08E+00 0.8909 1.74E+01 0.8381 5.68E-14
17309 0.0968 2.32E+01 0.9465 1.56E+00 0.9428 8.18E+00 1.0459 1.42E-13
68763 0.0489 1.15E+01 1.0237 7.81E-01 1.0113 3.98E+00 1.0529 3.41E-13

∥div σh∥l∞ e(ω) r(ω) e(∇u) r(∇u) e(σ̃) r(σ̃) ∥φh∥l∞ itt
5.68E-14 2.55E+01 – 5.29E+01 – 1.259E+02 – 5.71E-01 9
3.41E-13 3.63E+01 -0.5272 4.78E+01 0.1504 9.11E+01 0.4812 2.83E-01 9
9.09E-13 2.36E+01 0.6655 3.26E+01 0.5902 6.12E+01 0.6135 1.15E-01 7
2.73E-12 1.48E+01 0.6461 1.87E+01 0.7737 3.30E+01 0.8564 3.09E-02 5
1.46E-11 7.62E+00 0.9724 9.61E+00 0.9730 1.69E+01 0.9827 1.11E-02 4

Table 2.2: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence,
L∞–norm of divuh,div σh and φh for the for the mixed RT0 −RT0 −Ψh approx-
imation of the Navier–Stokes problem considering ν = 1.0.

In our second example, we study a regularized driven cavity problem. The domain

is given by the unit square Ω = (0, 1)2 and we consider a structured mesh with
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meshsize h = 0.0258. The data are given as in Reference [43, Example D.4], that is,

a null body force f = 0 and the prescribed velocity boundary

u(x, 1) =

(
u1(x)

0

)

where

u1(x) =



1− 1

4

(
1− cos

(
x1 − x

x1
π

))2

for x ∈ [0, x1],

1 for x ∈ (x1, 1− x1),

1− 1

4

(
1− cos

(
x− (1− x1)

x1
π

))2

for x ∈ [1− x1, 1].

In addition, all simulations in this example were carried out with x1 = 0.1. In

Figure 2.1, we show the velocity streamlines for Reynolds number Re = 1 (left) and

Re = 200 (right), with Re = 1/ν. It can be seen that, as expected, and similar to the

results obtained in [43, Example D.4], in the case of low Reynolds number Re = 1,

there is a large vortex whose centre is close to the upper boundary. On the other

hand, for increasing Reynolds numbers, the main vortex moves towards the centre

of the cavity. There are smaller counter-rotating vortices in both lower corners.

Finally, in our third example, we study an extension to a steady-state flow around

a cylinder. This example focuses on the performance of our numerical scheme, even

though the domain considered does not satisfy the connected boundary hypothesis

which corresponds to a fundamental assumption for the development of the theory

in this work. In fact, let Ω be a bounded polygonal domain in R2 with boundary ∂Ω

as shown in Figure 2.2 and assume that the boundary is decomposed into an inlet

Γin, an outlet Γout, the cylinder surface Γcyl and the upper and lower walls of the

channel, denoted by Γ1 and Γ3, i.e., ∂Ω = Γin ∪ Γout ∪ Γcyl ∪ Γ1 ∪ Γ3. In addition,

let us consider the incompressible steady-state Navier–Stokes equations with the
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Figure 2.1: Example 2: Velocity streamlines for ν = 1 (left) and ν = 0.005 (right)
with h = 0.0258.

Figure 2.2: Example 3: Sketch of a laminar flow around a cylinder.

boundary conditions specified below

−ν∆u+ (u · ∇)u+∇p = f in Ω,

divu = 0 in Ω,

u = 0 on Γ1 ∪ Γ3 ∪ Γcyl,

u(0, y) = 0.41−2

(
1.2y(0.41− y)

0

)
on Γin,

u(2.2, y) = 0.41−2

(
1.2y(0.41− y)

0

)
on Γout,

(p, 1)Ω = 0.
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Proceeding in a completely similar way as in Section 2.2, we obtain the variational

problem (2.2.19), with the functional F : X → R defined as follows

F (τ ) := ⟨τn,uD,io⟩Γ,

where

uD,io =


0 on Γ1 ∪ Γ3,

0.41−2

(
1.2y(0.41− y)

0

)
on Γin ∪ Γout.

Note that the functional F is well-defined and bounded. For further details see, for

instance, [4]. Thus, the discrete version of (2.2.19) corresponds to (2.4.1) with the

functional F defined above.

In this example, we consider a flow in a two-dimensional domain with a two-

dimensional cylinder (circle), whose diameter is d = 0.1m (see Figure 2.2 for a

schematic representation of this domain). The viscosity of the fluid is given by ν =

0.001, its density by ρ = 1 kg/m3, and the mean inflow velocity is Umean = 0.2m/s.

Based on the above values, the Reynolds number of the flow is Re = (dUmean)/ν =

20. There are no external forces acting on the flow, i.e., f = 0; no slip boundary

conditions are prescribed at the top and bottom of the channel and at the surface

body of the cylinder. In addition, the parabolic inflow and outflow are defined by

u(0, y) = u(2.2, y) = 0.41−2

(
1.2y(0.41− y)

0

)
, 0 ≤ y ≤ 0.41.

Figures 2.3 and 2.4 demostrate that the configuration described above admits a

steady-state solution. The velocity field figure reveals, as expected for a flow with

these characteristics, the formation of two symmetrical vortices behind the cylinder.

These vortices, associated with low-pressure regions, result directly from the flow

separation as it interacts with the cylinder’s surface, leading to a recirculation region

at the rear. The symmetry of the vortices is typical of the laminar flow regime at

these Reynolds numbers, where viscous forces dominate the flow dynamics.

Additionally, the velocity vectors illustrate how the fluid accelerates around the

cylinder, reaching maximum speed at the upper and lower regions, while decelerating



72

significantly in the wake. This pattern reflects the interaction between the fluid and

the cylinder: the flow slows at the front due to the obstruction, then accelerates at

the sides.

In the pressure field figure, a high-pressure zone appears at the front of the cylin-

der, where the flow directly impinges, while a pressure drop is observed in the rear,

indicating a low-pressure region behind the cylinder. This behavior is characteristic

of stationary laminar flows and is directly linked to the velocity distribution and the

forces acting on the body.

Figure 2.3: Example 3: Absolute value of the velocity (top) and pressure (bottom)
in the flow around a cylinder.

Also, in this example, we are interested in calculating three quantities: the

pressure difference between the front and the back of the cylinder, that is, ∆p =

p(0.15, 0.2) − p(0.25, 0.2) and the forces that are exerted on the body, that is, the

drag and lift coefficients given respectively by

cdrag = −500
(
(ν∇u,∇vd)Ω + (div (u⊗ u),vd)Ω − (p, div(vd))Ω

)
,

and

clift = −500
(
(ν∇u,∇vl)Ω + (div (u⊗ u),vl)Ω − (p, div(vl))Ω

)
,

respectively, where vd and vl are arbitrary functions belonging to H1(Ω) such that

(vd)|Γcyl
= (1, 0)t; (vl)|Γcyl

= (0, 1)t, and disappear on all other boundaries. Note

that, thanks to the definition of σ (cf. (2.2.3)) we can easily obtain the drag and lift
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Figure 2.4: Example 3: Velocity and pressure at the cylinder.

coefficients using the following expressions:

cdrag = −500 ν (σ,∇vd)Ω and clift = −500 ν (σ,∇vl)Ω,

respectively.

In this way, we get

∆p = 0.111109, cdrag = 5.49542 and clift = 0.00441961.

These results confirm that the laminar regime is dominated by viscous forces and

the stability of the flow around the cylinder. The low lift indicates that there are

no relevant instabilities. However, the considerable drag suggests that the cylinder
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generates significant drag, typical of laminar flows in this configuration.



Conclusions and future works

Conclusions

In this thesis we proposed, developed and analyzed two numerical schemes that,

at the discrete level, are able to conserve mass and momentum for the Stokes and

Navier–Stokes problems. The main conclusions of this work are:

1. We analyze a pseudostress-based mixed finite element method for the Stokes

problem that ensures both mass and momentum conservation. Mass conserva-

tion is achieved by approximating the velocity using the lowest-order Raviart–

Thomas elements, while momentum conservation is enforced through a discrete

Helmholtz decomposition of the piecewise-constant vector space. We establish

the well-posedness of the method and derive theoretical convergence rates, in-

cluding a superconvergence result for the velocity gradient approximation. A

key advantage of the proposed method is its computational efficiency, as it is

slightly less expensive than the classical pseudostress-based approach studied

in [11, 26], while also guaranteeing mass and momentum conservation. Addi-

tionally, we extend our analysis to the Stokes problem with mixed boundary

conditions and present numerical experiments that confirm the theoretical re-

sults.

2. We extend the previous analysis to the stationary Navier–Stokes problem. To

this end, we introduced a mixed formulation and subsequently decomposed

the velocity using a Helmholtz decomposition. We then derived a three-field

mixed variational formulation, where the pseudo-stress, velocity, and an ad-

ditional unknown representing the null function are the main unknowns of

the system. Additionally, other variables of interest, such as pressure, velocity

75
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gradient, vorticity, and stress tensor, are recovered through a simple post-

processing step. We developed the analysis of the continuous problem, where

we employed Banach’s fixed-point theorem and the Banach–Nečas–Babuška

theorem to prove the unique solvability. We then introduced and analyzed the

discrete problem, replicating the theory developed for the continuous problem.

We established the a priori error analysis for the proposed mixed finite element

method, obtaining stability estimates and an optimal order of convergence to

the solution. We developed FreeFEM++ codes to validate the theoretical re-

sults. Three numerical examples are reported to illustrate the performance of

the mixed finite element method and the theoretical convergence rate.

As a consequence of the work developed in this thesis we have the following

preprint under review:

� J. Camaño, R. Oyarzúa, K. Rojo. A momentum and mass conserva-

tive pseudostress-based mixed finite element method for the Stokes problem.

Preprint 2025-06, Centro de Investigación en Ingenieŕıa Matemática (CI2MA),

Universidad de Concepción, (2025).

Future works

The method developed and the results obtained in this thesis have motivated

several future projects. Some of them are described below:

1. Extension of the analysis of the Navier–Stokes problem to three

dimensions.

As a complement to the analysis developed in this thesis, we are interested in

extending our work to the three dimensional case.

2. A posteriori error analysis of momentum and mass conservative fi-

nite element methods for fluid flow problems.

In order to improve the robustness of the error in problems involving complex

geometries or solutions with high gradients, we are interested in conducting

an a posteriori error analysis for the problems studied in this thesis.



2.5 Numerical Results 77

3. New numerical schemes for coupled problems (Boussinesq, Stokes–

Darcy, Navier–Stokes–Darcy).

Finally, we aim to use the theory developed in this thesis to design new con-

servative numerical schemes for coupled problems.
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Conclusiones y trabajos futuros

Conclusiones

En esta tesis propusimos, desarrollamos y analizamos dos esquemas numéricos

que, a nivel discreto, son capaces de conservar masa y momentum para los problemas

de Stokes y Navier–Stokes. Las conclusiones principales de este trabajo son:

1. Analizamos un método de elementos finitos mixto basado en pseudoesfuerzo

para el problema de Stokes que asegura la conservación tanto de masa como

de momentum. La conservación de masa se consigue mediante la aproximación

de la velocidad utilizando los elementos Raviart–Thomas de orden más bajo,

mientras que la conservación de momentum se consigue mediante una des-

composición de Helmholtz discreta. Establecemos que el método está bien

planteado y obtenemos las tasas de convergencia teóricas, incluido un resultado

de superconvergencia para la aproximación del gradiente de velocidad. Una

ventaja clave del método propuesto es su eficiencia computacional, ya que

es ligeramente menos costoso que la aproximación clásica basada en pseudo-

esfuerzo estudiada en [11, 26], a la vez que garantiza la conservación de masa y

momentum. Además, extendemos nuestro análisis al problema de Stokes con

condiciones de contorno mixtas y presentamos experimentos numéricos que

confirman los resultados teóricos.

2. Extendemos el análisis anterior al problema estacionario de Navier–Stokes;

para ello introdujimos una formulación mixta y posteriormente, descompo-

nemos la velocidad mediante una descomposición de Helmholtz y derivamos

una formulación variacional mixta de tres campos, donde el pseudoesfuerzo,

la velocidad y una incógnita adicional que representa la función nula, son las

79



80

principales incógnitas del sistema. Adicionalmente, recuperamos por un simple

postproceso, otras variables de interés tales como la presión, gradiente de ve-

locidad, vorticidad y tensor de esfuerzo. Desarrollamos el análisis del problema

continuo, en donde empleamos los teoremas de punto fijo de Banach y Banach–

Nečas–Babuška, para demostrar la solvencia única. Luego introdujimos y anal-

izamos el problema discreto, replicando la teoŕıa desarrollada en el problema

continuo. Establecimos el análisis de error a priori para el método de ele-

mentos finitos mixtos propuesto, obteniendo estimaciones de estabilidad y un

orden óptimo de convergencia a la solución. Desarrollamos códigos Freefem++

para validar los resultados teóricos. Se reportan tres ejemplos numéricos que

ilustran el desempeño del método de elementos finitos mixtos y la tasa de

convergencia teórica.

Como consecuencia del trabajo desarrollado en esta tesis, tenemos la siguiente pre-

publicación sometida a revisión:

� J. Camaño, R. Oyarzúa, K. Rojo. A momentum and mass conserva-

tive pseudostress-based mixed finite element method for the Stokes problem.

Preprint 2025-06, Centro de Investigación en Ingenieŕıa Matemática (CI2MA),

Universidad de Concepción, (2025).

Trabajos futuros

El método desarrollado y los resultados obtenidos en esta tesis han motivado

varios proyectos a futuro. Algunos de ellos son descritos a continuación:

1. Extensión del análisis del problema de Navier–Stokes a tres dimen-

siones.

Como complemento al análisis desarrollado en esta tesis, nos interesa extender

nuestro trabajo al caso tridimensional.

2. Análisis de error a posteriori de métodos de elementos finitos que

conserven momentum y masa para problemas de flujo de fluidos.

Con el fin de mejorar la robustez del error en problemas que involucren geome-

tŕııas complejas o soluciones con altos gradientes, es que estamos interesados
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en llevar a cabo un análisis de error a posteriori para los problemas estudiados

en esta tesis.

3. Nuevos esquemas numéricos para problemas acoplados (Boussinesq,

Stokes–Darcy, Navier–Stokes–Darcy).

Finalmente, nuestro objetivo es utilizar la teoŕıa desarrollada en esta tesis para

diseñar nuevos esquemas numéricos conservativos para problemas acoplados.
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